首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

2.
Abstract. A mechanistic model of photosynthesis is developed based on the characteristics of ribulose 1,5-bisphosphate (RuBP) carboxylase and the assimilation of CO2 as an ordered reaction with RuBP binding before CO2. An equation is derived which considers the effects of light (for regeneration of RuBP) and CO2. Taking values for the maximum turnover of RuBP carboxylase at substrate saturation, the maximum carboxylation efficiency (maximum increase in rate per increase in CO2 concentration) and the minimum quantum requirement for the C3 pathway, photosynthesis in the absence of photorespiration is simulated. In the model, at varying concentrations of CO2, the efficiency of light utilization approaches a maximum value as photon flux density decreases. Similarly, with a given maximum carboxyation capacity, at varying photon flux densities the carboxylation efficiency approaches a constant maximum value (equal to V max/ K m CO2) as CO2 is decreased. However, a decrease in the state of activation of RuBP carboxylase under low light results in a lower carboxylation efficiency. Limits on the rate of photosynthesis, as the maximum capacity for regeneration of RuBP is reduced relative to carboxylation potential, or as the maximum capacity of the carboxylase varies, are considered.  相似文献   

3.
The long-term role of photorespiration was investigated by comparing growth, development, gas exchange characteristics and mineral nutrition of a wheat crop ( Triticum aestivum L. cv. Courtot) cultivated in a culture chamber during a life cycle, either in 4% O2 or in normal O2 Low O2 pressure reduced photorespiration, but CO2 was controlled so that net photosynthesis remained the same as in the control crop. The growth and development of the low O2 crop was slowed down. Ear appearance was 16 days late, but the rate of tillering was the same as in the control and was maintained longer so that the final number of tillers was doubled. Pigment, ribulose bisphosphate carboxylase (EC 4.1.1.39) and soluble sugar contents were similar. The response of photosynthesis to CO2 and O2 was not appreciably changed by the low O2 treatment. There was almost no seed formation, and the senescence of the leaves was delayed. It appears that in non-stress conditions most of the photorespiration can be suppressed without damage to the photosynthetic apparatus. Retardation of development and inhibition of reproduction are likely due to other effects of O2.  相似文献   

4.
Diurnal regulation of photosynthesis in understory saplings   总被引:6,自引:1,他引:5  
Photosynthetic rates of plants grown in natural systems exhibit diurnal patterns often characterized by an afternoon decline, even when measured under constant light and temperature conditions. Since we thought changes in the carbohydrate status could cause this pattern through feedback from starch and sucrose synthesis, we studied the natural fluctuations in photosynthesis rates of plants grown at 36 and 56 Pa CO2 at a FACE (free-air-CO2-enrichment) research site. Light-saturated photosynthesis varied by 40% during the day and was independent of the light-limited quantum yield of photosynthesis, which varied little through the day. Photosynthesis did not correspond with xylem water potential or leaf carbohydrate build-up, but rather with diurnal changes in air vapor-pressure deficit and light. The afternoon decline in photosynthesis also corresponded with decreased stomatal conductance and decreased Rubisco carboxylation efficiency which in turn allowed leaf-airspace CO2 partial pressure to remain constant. Growth at elevated CO2 did not affect the afternoon decline in photosynthesis, but did stimulate early-morning photosynthesis rates relative to the rest of the day. Plants grown at 56 Pa CO2 had higher light-limited quantum yields than those at 36 Pa CO2 but, there was no growth–CO2 effect on quantum yield when measured at 2 kPa O2. Therefore, understory plants have a high light-limited quantum yield that does not vary through the day. Thus, the major diurnal changes in photosynthesis occur under light-saturated conditions which may help understory saplings maximize their sunfleck-use-efficiency.  相似文献   

5.
The CO2-concentrating mechanism present in C4 plants decreases the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and, consequently, photorespiratory rates in air. Under drought conditions, the intercellular CO2 concentration may decrease and cause photorespiration to increase. The C4 grasses Paspalum dilatatum Poiret, Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel were grown in soil and drought was imposed by ceasing to provide water. Net CO2 assimilation ( A ) and stomatal conductance to water vapour decreased with leaf dehydration. Decreased carbon and increased oxygen isotope composition were also observed under drought. The response of A to CO2 suggested that the compensation point was zero in all species irrespective of the extent of drought stress. A slight decrease of A as O2 concentration increased above 10% provided evidence for slow photorespiratory gas exchanges. Analysis of amino acids contained in the leaves, particularly the decrease of glycine after 30 s in darkness, supported the presence of slow photorespiration rates, but these were slightly faster in Cynodon dactylon than in Paspalum dilatatum and Zoysia japonica . Although the contents of glycine and serine increased with dehydration and mechanistic modelling of C4 photosynthesis suggested slightly increased photorespiration rates in proportion to photosynthesis, the results provide evidence that photorespiration remained slow under drought conditions.  相似文献   

6.
Three soybean ( Glycine max L. Merr.) cultivars (Maple Glen, Clark and CNS) were exposed to three CO2 concentrations (370, 555 and 740 μmol mol−1) and three growth temperatures (20/15°, 25/20° and 31/26°C, day/night) to determine intraspecific differences in single leaf/whole plant photosynthesis, growth and partitioning, phenology and final biomass. Based on known carboxylation kinetics, a synergistic effect between temperature and CO2 on growth and photosynthesis was predicted since elevated CO2 increases photosynthesis by reducing photorespiration and photorespiration increases with temperature. Increasing CO2 concentrations resulted in a stimulation of single leaf photosynthesis for 40–60 days after emergence (DAE) at 20/15°C in all cultivars and for Maple Glen and CNS at all temperatures. For Clark, however, the onset of flowering at warmer temperatures coincided with the loss of stimulation in single leaf photosynthesis at elevated CO2 concentrations. Despite the season-long stimulation of single leaf photosynthesis, elevated CO2 concentrations did not increase whole plant photosynthesis except at the highest growth temperature in Maple Glen and CNS, and there was no synergistic effect on final biomass. Instead, the stimulatory effect of CO2 on growth was delayed by higher temperatures. Data from this experiment suggest that: (1) intraspecific variation could be used to select for optimum soybean cultivars with future climate change; and (2) the relationship between temperature and CO2 concentration may be expressed differently at the leaf and whole plant levels and may not solely reflect known changes in carboxylation kinetics.  相似文献   

7.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

8.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

9.
Changes in the temperature dependence of the photosynthetic rate depending on growth temperature were investigated for a temperate evergreen tree, Quercus myrsinaefolia . Plants were grown at 250 μ mol quanta m–2 s–1 under two temperature conditions, 15 and 30 °C. The optimal temperature that maximizes the light-saturated rate of photosynthesis at 350 μ L L–1 CO2 was found to be 20–25 and 30–35 °C for leaves grown at 15 and 30 °C, respectively. We focused on two processes, carboxylation and regeneration of ribulose-1,5-bisphosphate (RuBP), which potentially limit photosynthetic rates. Because the former process is known to limit photosynthesis at lower CO2 concentrations while the latter limits it at higher CO2 concentrations, we determined the temperature dependence of the photosynthetic rate at 200 and 1000 μ L L–1 CO2 under saturated light. It was revealed that the temperature dependence of both processes varied depending on the growth temperature. Using a biochemical model, we estimated the capacity of the two processes at various temperatures under ambient CO2 concentration. It was suggested that, in leaves grown at low temperature (15 °C), the photosynthetic rate was limited solely by RuBP carboxylation under any temperature. On the other hand, it was suggested that, in leaves grown at high temperature (30 °C), the photosynthetic rate was limited by RuBP regeneration below 22 °C, but limited by RuBP carboxylation above 22 °C. We concluded that: (1) the changes in the temperature dependence of carboxylation and regeneration of RuBP and (2) the changes in the balance of these two processes altered the temperature dependence of the photosynthetic rate.  相似文献   

10.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

11.
Seedlings of three species native to central North America, a C3 tree, Populus tremuloides Michx., a C3 grass, Agropyron smithii Rybd., and a C4 grass, Bouteloua curtipendula Michx., were grown in all eight combinations of two levels each of CO2, O3 and nitrogen (N) for 58 days in a controlled environment. Treatment levels consisted of 360 or 674 μmol mol-1 CO2, 3 or 92 nmol mol-1 O3, and 0.5 or 6.0 m M N. In situ photosynthesis and relative growth rate (RGR) and its determinants were obtained at each of three sequential harvests, and leaf dark respiration was measured at the second and third harvests. In all three species, plants grown in high N had significantly greater whole-plant mass, RGR and photosynthesis than plants grown in low N. Within a N treatment, elevated CO2 did not significantly enhance any of these parameters nor did it affect leaf respiration. However, plants of all three species grown in elevated CO2 had lower stomatal conductance compared to ambient CO2-exposed plants. Seedlings of P. tremuloides (in both N treatments) and B. curtipendula (in high N) had significant ozone-induced reductions in whole-plant mass and RGR in ambient but not under elevated CO2. This negative O3 impact on RGR in ambient CO2 was related to increased leaf dark respiration, decreased photosynthesis and/or decreased leaf area ratio, none of which were noted in high O3 treatments in the elevated CO2 environment. In contrast, A. smithii was marginally negatively affected by high O3.  相似文献   

12.
Measurements of photosynthesis and respiration in plants   总被引:6,自引:1,他引:5  
Hunt S 《Physiologia plantarum》2003,117(3):314-325
Methods for measuring the rates of photosynthesis and respiration in plants are reviewed. Closed systems that involve manometric techniques, 14CO2 fixation, O2 electrodes and other methods for measuring dissolved and gas phase O2 are described. These methods typically provide time-integrated rate measurements, and limitations to their use are discussed. Open gas exchange systems that use infra-red CO2 gas analysers and differential O2 analysers for measuring instantaneous rates of CO2 and O2 exchange are described. Important features of the analysers, design features of gas exchange systems, and sources of potential error are considered. The analysis of chlorophyll fluorescence parameters for estimating the quantum yield for O2 evolution and CO2 fixation is described in relation to new fluorescence imaging systems for large scale screening of photosynthetic phenotypes, and the microimaging of individual chloroplasts.  相似文献   

13.
Chlamydomonas acidophila Negoro is a green algal species abundant in acidic waters (pH 2–3.5), in which inorganic carbon is present only as CO2. Previous studies have shown that aeration with CO2 increased its maximum growth rate, suggesting CO2 limitation under natural conditions. To unravel the underlying physiological mechanisms at high CO2 conditions that enables increased growth, several physiological characteristics from high- and low-CO2-acclimated cells were studied: maximum quantum yield, photosynthetic O2 evolution (Pmax), affinity constant for CO2 by photosynthesis (K0.5,p), a CO2-concentrating mechanism (CCM), cellular Rubisco content and the affinity constant of Rubisco for CO2 (K0.5,r). The results show that at high CO2 concentrations, C. acidophila had a higher K0.5,p, Pmax, maximum quantum yield, switched off its CCM and had a lower Rubisco content than at low CO2 conditions. In contrast, the K0.5,r was comparable under high and low CO2 conditions. It is calculated that the higher Pmax can already explain the increased growth rate in a high CO2 environment. From an ecophysiological point of view, the increased maximum growth rate at high CO2 will likely not be realised in the field because of other population regulating factors and should be seen as an acclimation to CO2 and not as proof for a CO2 limitation.  相似文献   

14.
The total resistances to CO2 uptake by Sticta latifrons Rich, and Pseudocyphellaria amphisticta Kremp. were separated into transport and carboxylation components by calculation after transformation of net photosynthesis rate against CO2 concentration curves into a linear form. The use of this technique circumvented the problem of measuring the internal CO2 concentration of the lichen thalli. Both species exhibited an increase in transport resistance at high thallus water contents and an increase in both transport and carboxylation resistances at low water contents. At low and intermediate water contents internal transport resistances were larger than carboxylation resistances when measured at limiting CO2 concentrations. However, at ambient CO2 concentrations carboxylation processes were the dominant factors limiting photosynthesis at all, except the high, water contents.  相似文献   

15.
Abstract. The effect of short-term SO2 fumigation on photosynthesis and transpiration of Vicia faba L. was measured at different irradiances and SO2 concentrations. At high irradiances photosynthetic rates were reduced when leaves were exposed to SO2 and the magnitude of the reduction was linearly related to the rate of SO2 uptake through the stomata. Photosynthetic rates stabilized within 2 h after the start of fumigation.
The effect of SO2 on photosynthesis was measured at different CO2 concentrations to analyse the contribution of stomatal and non-stomatal factors to photosynthetic inhibition. Mesophyll resistance to CO2 diffusion increased as a result of SO2 exposure and caused a rapid reduction in photosynthesis after the start of fumigation. Stomatal resistance was not affected directly by SO2 fumigation, but indirectly as a result of a feedback loop between net photosynthesis and internal CO2 concentration.
Analysis of gas-exchange measurements in biochemical terms indicated that photosynthetic inhibition during SO2 exposure can be explained by a stronger reduction in the affinity of RBP carboxylase/oxygenase for CO2 than for O2.  相似文献   

16.
Abstract. The common marine macroalga Ulva was found to have a surface pH of about 10 during photosynthesis. Under such a condition, the equilibrium CO2 concentration within the unstirred layer would be below reported CO2 compensation points, and dehydration of HCO3 could not occur. Even at a compensation point approaching zero, uncatalysed rates of HCO3 to CO2 conversion within the unstirred layer volume could not support photosynthetic rates as measured under stirred conditions in the presence of a carbonic anhydrase inhibitor. Based on this, it is concluded that Ulva takes up HCO3. It is likely that HCO3 uptake leads to high internal CO2 levels which, in turn, suppress photorespiration and thus cause this plant's efficient gas exchange features. Carbonic anhydrase activity was measurable only in plant extracts. However, inhibitor studies suggest the presence of a surface enzyme. The possible functions of extracellular carbonic anhydrase in Ulva are assessed in terms of CO2 hydration during emergence and a possible HCO3, transport system.  相似文献   

17.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

18.
The carbon assimilation efficiency and the internal composition of the chlorophyte Dunaliella viridis have been studied under conditions of current (0.035%) and enriched (1%) levels of CO2, with and without N limitation (supplied as nitrate). Results show that both photosynthesis and growth rates are enhanced by high CO2, but the strategy of acclimation also involves the light harvesting machinery and the nutritional metabolism in an N supply dependent manner. D. viridis carried out a qualitative rather than a quantitative acclimation of the light harvesting system leading to increased PSII quantum yields. Total internal C decreased as a consequence of either active growth or organic carbon release to the external medium. The latter process allowed photosynthetic electron transport to proceed at higher rates than under normal CO2 conditions, and maintained the internal C:N balance in a narrow range (under N sufficiency). N limitation generally prevented the effects of high CO2, with some exceptions such as the photosynthetic O2 evolution rate.  相似文献   

19.
Two rice ( Oryza sativa L.) cultivars of contrasting morphologies, IR-36 and Fujiyama-5, were exposed to ambient (360 μl l−1) and ambient plus 300 μl l−1 CO2 from time of emergence until ca 50% grain fill at the Duke University Phytotron, Durham, North Carolina. Exposure to increased CO2 resulted in about a 50% increase in the photosynthetic rate for both cultivars and photosynthetic enhancement was still evident after 3 months of exposure to a high CO2 environment. The photosynthetic response at 5% CO2 and the response of CO2 assimilation (A) to internal CO2 (Ci) suggest a reallocation of biochemical resources from RuBP carboxylation to RuBP regeneration. Increases in total plant biomass at elevated CO2 were approximately the same in both cultivars, although differences in allocation patterns were noted in root/shoot ratio. Differences in reproductive characteristics were also observed between cultivars at an elevated CO2 environment with a significant increase in harvest index for IR-36 but not for Fujiyama-5. Changes in carbon allocation in reproduction between these two cultivars suggest that lines of rice could be identified that would maximize reproductive output in a future high CO2 environment.  相似文献   

20.
Influence of soil O2 and CO2 on root respiration for Agave deserti   总被引:5,自引:0,他引:5  
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2. When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1, did not affect root respiration at concentrations up to 2 000 μl l-1, but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2, inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2, substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号