首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Zhang X  Li M  Wei D  Wang X  Chen X  Xing L 《Current microbiology》2007,55(2):128-134
The γ-linolenic acid-producing fungus Mortierella isabellina 6-22 is an important industrial strain. To clarify the biosynthetic pathways for polyunsaturated fatty acids in this strain, a disruption vector pD4MI6, including 5′ and 3′ regions of the fatty acid Δ6-desaturase open reading frame as homologous recombination elements and the Escherichia coli hygromycin B (HmB) phosphotransferase gene (hph) as selectable marker, was successfully constructed. Following transformation of pD4MI6 into the hygromycin B-sensitive recipient strain M. isabellina 6-22-4, a Δ6-desaturase gene-defective mutant strain was selected that was unable to produce γ-linolenic acid as determined by gas chromatography and molecular analysis. The morphology and physiology of the mutant, such as colony shape, color, and growth rate, were changed dramatically compared with that of strain M. isabellina 6-22-4.  相似文献   

2.
A mutant considered to be defective in the conversion of n-6 to n-3 fatty acids (3-desaturation) was derived from a 5-desaturation-defective mutant (Mut44) of Mortierella alpina 1S-4, after treating its spores with N-methyl-N-nitro-N-nitrosoguanidine. This mutant cannot produce 8(Z),11(Z),14(Z),17(Z)-eicosatetraenoic acid or any other n-3 fatty acids, of which about 10% was found in its parental strain upon cultivation at 12°C. The mutant's growth rate was comparable to that of the parental strain when grown at 28°C, but it became much slower when the mutant grew at 12°C, at which the lag phase for Mut44 was about 2 d but 5 d for the mutant.Abbreviations 18:33 9(Z),12(Z),15(Z)-octadecatrienoic acid - 18:43 6(Z),9(Z),12(Z),15(Z)-octadecatetraenoic acid - 20:43 8(Z),11(Z),14(Z),17(Z)-eicosatetraenoic acid - AA arachidonic acid - DHGA dihomo--linolenic acid - EPA 5(Z),8(Z),11(Z),14(Z),17(Z)-eicosapentaenoic acid - GLC gas-liquid chromatography - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PC phosphatidylcholine  相似文献   

3.
Enhanced production of 5,8,11-eicosatrienoic acid (Mead acid, 20:3omega9) was attained with a mutant fungus, Mortierella alpina JT-180, derived from delta12 desaturation activity-defective and delta6 desaturation activity-enhanced M. alpina M209-7. Production of 20:3omega9 by JT-180 was 1.4 times greater than that of the parent strain M209-7. This is thought to be due to its enhanced Delta5 desaturation activity, which was 3.3 times higher than that of M209-7. In both strains, 78.5-80.4% of the total lipids comprised triacylglycerol (TG), and 76.6-79.0% of 20:3omega9 was present in TG. Comparing the fatty acid compositions among various lipid species, the highest percentages (24.1-37.6%) of 20:3omega9 in total lipids were found in phosphatidylcholine. For optimization of 20:3omega9 production by JT-180, a glucose concentration of 4% in the culture medium and shifting of the growth temperature from 28 degrees C to 20 degrees C on the 2nd day were shown to be effective. Under optimal conditions, 20:3omega9 production by JT-180 reached 1.92 g/l culture medium in a 10-l jar fermentor (corresponding to 81.5 mg/g dry mycelia and 18.3% of total fatty acids), which is greater than that reported previously from M209-7 (1.65 g/l).  相似文献   

4.
5.
Arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the most biologically active polyunsaturated fatty acids, but their biosyntheses in mammals are very limited. The biosynthesis of DHA is the most difficult, because this undergoes the Sprecher pathway–a further elongation step from docosapentaenoic acid (DPA), a Δ6-desaturase acting on a C24 fatty acid substrate followed by a peroxisomal chain shortening step. This paper reports the successful heterologous expression of two non-mammalian genes (with modification of codon usage), coding for Euglena gracilis Δ4-desaturase and Siganus canaliculatus Δ4-desaturase respectively, in mammalian cells (HEK293 cell line). Both of the Δ4-desaturases can efficiently function, directly converting DPA into DHA. Moreover, the cooperation of the E. gracilis Δ4-desaturase with C. elegans Δ15-desaturase (able to convert a number of n-6 PUFAs to their corresponding n-3 PUFAs) in transgenic HEK293 cells made a more desirable fatty acid composition – a drastically reduced n-6/n-3 PUFAs ratio and a high level of DHA as well as EPA and ARA. Our findings provide a basis for potential applications of the gene constructs for expression of Δ15/Δ4-desaturases in transgenic livestock to produce such a fatty acid profile in the related products, which certainly will bring benefit to human health.  相似文献   

6.
7.
Cyanobacterium sp. IPPAS B-1200 is characterized by a high content of rare fatty acids (FAs), both myristic (14:0–30%) and myristoleic (14:1Δ9–10%) in the membrane lipids. Thus, short-chain FAs reach 40% of the sum of all FAs in cells, which is unusual for Cyanobacteria. Monounsaturated palmitoleic acids (16:1Δ9) also reach 40% of the sum of the FAs. We determined the complete nucleotide sequence of the genome of this cyanobacterium and found the only gene for the acyl-lipid Δ9-desaturase, desC1. We cloned this gene and characterized its specificity to the length of the substrate using heterologous expression in Escheriсhia coli. The results show that DesC1 nonspecifically generates olefin bond in FAs with a length of 14, 16, and 18 carbon atoms. This finding confirms that all monoesterifed FAs in Cyanobacterium sp. IPPAS B-1200 are generated by one acyl-lipid Δ9-desaturase.  相似文献   

8.
To study the function of the B cell signal transduction molecule α4 (IGBP1), we isolated a human α4 (IGBP1) gene that has sequence similarity to the yeast protein (TAP42) involved in the rapamycin-sensitive signal transduction pathway. The human α4 has sequence identities with murine α4 of 83.4% nucleotide and 82.9% amino acid sequence, and a stretch of consensus motifs in the carboxyl terminal is conserved among the related genes of human, mouse, yeast, and rice. The gene is expressed as a 1.4-kb mRNA in the spleen, lymph node, thymus, appendix, peripheral blood leukocytes, bone marrow, fetal liver, heart, brain, placenta, skeletal muscle, kidney, and pancreas. The anti-human α4 antibody detected a 45-kDa protein in human lymphoid cell lines. Moreover, human α4 (IGBP1) gene is located at q13.1–q13.3 on chromosome X.  相似文献   

9.
Protease activated receptors (PARs) are G-protein coupled receptors that are activated by an unique proteolytic mechanism. These receptors play crucial roles in hemostasis and thrombosis but also in inflammation and vascular development. PARs have also been implicated in tumor progression, invasion and metastasis. In this study, we investigated expression and signaling of PAR1 in nonmalignant pleural mesothelial (Met-5A) and malignant pleural mesothelioma (NCI-H28) cells. We found that the expression level of PAR1 was markedly higher in NCI-H28 cells compared to Met-5A and human primary mesothelial cells. Other three malignant pleural mesothelioma cell lines, i.e. REN, Ist-Mes2, and Mero-14, did not show any significant PAR1 over-expression compared to Met-5A cell line. Thrombin and PAR1 activating peptides enhanced Met-5A and NCI-H28 cell proliferation but in NCI-H28 cells higher thrombin concentrations were required to obtain the same proliferation increase. Similarly, thrombin caused extracellular signal-regulated kinase 1/2 activation in both cell lines but NCI-H28 cells responded at higher agonist concentrations. We also determined that PAR1 signaling through Gq and G12/13 proteins is severely altered in NCI-H28 cells compared to Met-5A cells. On the contrary, PAR1 signaling through Gi proteins was persistently maintained in NCI-H28 cells. Furthermore, we demonstrated a reduction of cell surface PAR1 expression in NCI-H28 and malignant pleural mesothelioma REN cells. Thus, our results provide evidences for dysfunctional PAR1 signaling in NCI-H28 cells together with reduced plasma membrane localization. The role of PAR1 in mesothelioma progression is just emerging and our observations can promote further investigations focused on this G-protein coupled receptor.  相似文献   

10.
In humans, MOZART1 plays an essential role in mitotic spindle formation as a component of the γ-tubulin ring complex. We report that the fission yeast homologue of MOZART1, Mzt1/Tam4, is located at microtubule-organizing centers (MTOCs) and coimmunoprecipitates with γ-tubulin Gtb1 from cell extracts. We show that mzt1/tam4 is an essential gene in fission yeast, encoding a 64–amino acid peptide, depletion of which leads to aberrant microtubule structure, including malformed mitotic spindles and impaired interphase microtubule array. Mzt1/Tam4 depletion also causes cytokinesis defects, suggesting a role of the γ-tubulin complex in the regulation of cytokinesis. Yeast two-hybrid analysis shows that Mzt1/Tam4 forms a complex with Alp6, a fission yeast homologue of γ-tubulin complex protein 3 (GCP3). Biophysical methods demonstrate that there is a direct interaction between recombinant Mzt1/Tam4 and the N-terminal region of GCP3Alp6. Together our results suggest that Mzt1/Tam4 contributes to the MTOC function through regulation of GCP3Alp6.  相似文献   

11.
12.
Abstract

Transition metal complexes [Cu(II), Co(I1) and Ni(II)] of 5-amino-l-β-D-ribofuranosylimidazole-4-carboxylic acid have been prepared and shown to form a series of stoichiometry ML2, nM(OH2) (n = 0,1,2) and structures have been assigned. Analogous complexes of 5-amino-l-β-D-ribofuranosylimidazole-4-carboxy1ic acid 5′-phosphate (CAIR), a central intermediate in the de novo pathway to purine nucleotides, produced in aqueous solution have been found to affect the activity of the enzyme AIR- carboxylase (E.C. 4.1.1.21).  相似文献   

13.

Background

The objective of this study was to demonstrate the anti-skin cancer and chemopreventive potential of 1,1-bis(3′-indolyl)-1-(p-chlorophenyl methane) (DIM-D) using an in vitro model.

Methods

In vitro cell cytotoxicity and viability assays were carried out in A431 human epidermoid carcinoma cell line and normal human epidermal keratinocytes (NHEK) respectively by crystal violet staining. Apoptosis induction in A431 cells (DIM-D treated) and NHEK cells pretreated with DIM-D (2 hr) prior to UVB irradiation, were assessed. The accumulation of reactive oxygen species (ROS) in DIM-D pretreated NHEK cells (2 hr) prior to UVB exposure was also determined. Immunocytochemistry and western blot analysis was performed to determine cleaved caspase 3 and DNA damage markers in DIM-D treated A431 cells and in DIM-D pretreated NHEK cells prior to UVB irradiation.

Results

The IC50 values of DIM-D were 68.7±7.3, 48.3±10.1 and 11.5±3.1 μM whilst for Epigallocatechin gallate (EGCG) were 419.1±8.3, 186.1±5.2 and 56.7±3.1 μM for 24, 48 and 72 hr treatments respectively. DIM-D exhibited a significantly (p<0.05) greater induction of DNA fragmentation in A431 cells compared to EGCG with percent cell death of 38.9. In addition, DIM-D induced higher expression in A431 cells compared to EGCG of cleaved caspase 3 (3.0-fold vs. 2.4-fold changes), Nurr1 (2.7-fold vs. 1.7-fold changes) and NFκB (1.3-fold vs. 1.1-fold changes). DIM-D also exhibited chemopreventive activity in UVB-irradiated NHEK cells by significantly (p<0.05) reducing UVB-induced ROS formation and apoptosis compared to EGCG. Additionally, DIM-D induced expression of Nurr1 but reduced expression of 8-OHdG significantly in UVB-irradiated NHEK cells compared to EGCG and UV only.

Conclusion

Our results suggest that DIM-D exhibits Nurr1-dependent transactivation in the induction of apoptosis in A431 cells and it protects NHEK cells against UVB-induced ROS formation and DNA damage.  相似文献   

14.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by abnormal autoreactivity in B cells. Lymphocytes and their soluble mediators contribute to the disease pathogenesis. We recently demonstrated that infecting lupus mice with malaria confers protection against lupus nephritis by attenuating oxidative stress in both liver and kidney tissues. In the current study, we further investigated B cell autoreactivity in female BWF1 lupus mice after infection with either live or gamma-irradiated malaria, using ELISA, flow cytometry and Western blot analysis. The lupus mice exhibited a significant elevation in plasma levels of IL-4, IL-6, IL-7, IL-12, IL-17, IFN-α, IFN-γ, TGF-β, BAFF and APRIL and a marked elevation of IgG2a, IgG3 and ant-dsDNA autoantibodies compared with normal healthy mice. Infecting lupus mice with live but not gamma-irradiated malaria parasite partially and significantly restored the levels of the soluble mediators that contribute to the progression of lupus. Furthermore, the B cells of lupus mice exhibited an increased proliferative capacity; aberrant overexpression of the chemokine receptor CXCR4; and a marked elevation in responsiveness to their cognate ligand (CXCL12) via aberrant activation of the PI3K/AKT, NFκB and ERK signaling pathways. Interestingly, infecting lupus mice with live but not gamma-irradiated malaria parasite restored a normal proliferative capacity, surface expression of CXCR4 and B cell response to CXCL-12. Taken together, our data present interesting findings that clarify, for the first time, the molecular mechanisms of how infection of lupus mice with malaria parasite controls B cell autoreactivity and thus confers protection against lupus severity.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号