首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dnaB protein of Escherichia coli groPB mutants   总被引:1,自引:0,他引:1  
  相似文献   

3.
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed.  相似文献   

4.
dnaB protein of Escherichia coli is an essential replication protein. A missense mutant has been obtained which results in replacement of an arginine residue with cysteine at position 231 of the protein (P. Shrimankar, L. Shortle, and R. Maurer, unpublished data). This mutant displays a dominant-lethal phenotype in strains that are heterodiploid for dnaB. Biochemical analysis of the altered form of dnaB protein revealed that it was inactive in replication in several purified enzyme systems which involve specific and nonspecific primer formation on single-stranded DNAs, and in replication of plasmids containing the E. coli chromosomal origin. Inactivity in replication appeared to be due to its inability to bind to single-stranded DNA. The altered dnaB protein was inhibitory to the activity of wild type dnaB protein in replication by sequestering dnaC protein which is also required for replication. By contrast, it was not inhibitory to dnaB protein in priming of single-stranded DNA by primase in the absence of single-stranded DNA binding protein. Sequestering of dnaC protein into inactive complexes may relate to the dominant-lethal phenotype of this dnaB mutant.  相似文献   

5.
Summary A restriction fragment of DNA carrying the P gene was cloned in the high copy number plasmid RSF2124. Cells harbouring this new plasmid RSF2124/E complement Pam80 phage. A lac promoter-operator region (lacP), produced by EcoRI digestion of plasmid pKB252, was inserted into RSF2124/glE such that induction of the lac promoter by IPTG or lactose leads to increased production of the P gene product. A high amount of P protein in E. coli cells results in a slow inhibition of bacterial DNA synthesis, suggesting that the initiation reaction is blocked by P protein. Synthesis of DNA proceeds normally under these conditions.Nonsuppressing groPA15 mutant bacteria which are unable to support the replication of wild-type (wt), acquire the ability to replicate Pam80 phage but not wt when they are transformed with a plasmid carrying the P gene. When harbouring a plasmid containing the mutant Pamber 80 gene, groPA15 mutants are able to support the replication of wt phage when infected at a high multiplicity. Pam80 phage does not multiply in these cells.  相似文献   

6.
Using highly purified bacteriophage lambda and E. coli replication proteins, we were able to reconstitute an in vitro system capable of replication ori lambda-containing plasmid DNA. The addition of a new E. coli factor, the grpE gene product, to this replication system reduced the level of dnaK protein required for efficient DNA synthesis by at least 10-fold, and also allowed the isolation of a stable DNA replication intermediate. Based on all available information, we propose a molecular mechanism for the action of the dnaK and grpE proteins during the prepriming reaction leading to lambda DNA synthesis.  相似文献   

7.
Summary The position of the metJBLF gene cluster in the transducing phage dmet102 was determined by ligation of its leftmost EcoRI fragment (102-1) to the BCDEF (nin5) EcoRI fragment of gtl (BC) and characterization of the resultant recombinant phage. The new transducing phage carries about 6kb of bacterial DNA which contains the entire met gene cluster including the promoter of its rightmost member metF. Reasonable estimates of the coding capacity required for the four genes indicate that most of the bacterial DNA of the recombinant phage is occupied by the met gene cluster.  相似文献   

8.
The Escherichia coli dnaB replication protein is a DNA helicase   总被引:55,自引:0,他引:55  
Genetic and biochemical analyses indicate that the Escherichia coli dnaB replication protein functions in the propagation of replication forks in the bacterial chromosome. We have found that the dnaB protein is a DNA helicase that is capable of unwinding extensive stretches of double-stranded DNA. We constructed a partially duplex DNA substrate, containing two preformed forks of single-stranded DNA, which was used to characterize this helicase activity. The dnaB helicase depends on the presence of a hydrolyzable ribonucleoside triphosphate, is maximally stimulated by a combination of E. coli single-stranded DNA-binding protein and E. coli primase, is inhibited by antibody directed against dnaB protein, and is inhibited by prior coating of the single-stranded regions of the helicase substrate with the E. coli single-stranded DNA-binding protein. It was determined that the dnaB protein moves 5' to 3' along single-stranded DNA, apparently in a processive fashion. To invade the duplex portion of the helicase substrate, the dnaB protein requires a 3'-terminal extension of single-stranded DNA in the strand to which it is not bound. Under optimal conditions at 30 degrees C, greater than 1 kilobase pair of duplex DNA can be unwound within 30 s. Based on these findings and other available data, we propose that the dnaB protein is the primary replicative helicase of E. coli and that it actively and processively migrates along the lagging strand template, serving both to unwind the DNA duplex in advance of the leading strand and to potentiate synthesis by the bacterial primase of RNA primers for the nascent (Okazaki) fragments of the lagging strand.  相似文献   

9.
Environmental mutagen testing in Escherichia coli and phage lambda   总被引:2,自引:0,他引:2  
S Kondo 《Mutation research》1974,26(4):235-241
  相似文献   

10.
Recombination between short linear double-stranded DNA molecules and Escherichia coli chromosomes bearing the red genes of bacteriophage lambda in place of recBCD was tested in strains bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell; formation of Lac(-) chloramphenicol-resistant bacterial progeny was measured. Recombinant formation was found to be reduced in ruvAB and recQ strains. In this genetic background, mutations in recF, recO, and recR had large effects on both cell viability and on recombination. In these cases, deletion of the sulA gene improved viability and strain stability, without improving recombination ability. Expression of a gene(s) from the nin region of phage lambda partially complemented both the viability and recombination defects of the recF, recO, and recR mutants and the recombination defect of ruvC but not of ruvAB or recQ mutants.  相似文献   

11.
12.
Adsorption and penetration, the first two steps in the life cycle of bacteriophage λ, were examined in vitro. As hosts for λ infection, the envelope and the cytoplasmic membrane, isolated from Escherichia coli K12 bacteria, were used. Lambda phage was found to adsorb and to inject its genetic material into the envelope-membrane complex, provided the envelope had been isolated from λ-sensitive cells; for the cytoplasmic membrane it is irrelevant whether it originates from λ-sensitive or from λ-resistant bacteria. No adsorption was found if either the envelope or the cytoplasmic membrane was separately infected. Following adsorption, λ DNA is rendered accessible to the hydrolytic action of DNase during the first six minutes. After that lambda DNA becomes DNase resistant. In this state it is found associated with the envelope-membrane complex.  相似文献   

13.
The Escherichia coli GroP- phenotype, associated with some dnaB mutants and measured as a decreased ability to plate lambda bacteriophage, was altered by some rpoB mutations. The rpoB effect showed an allele specificity. The participation both of dnaB and of lambda P alleles in the GroP- phenotype was also allele specific. It was concluded that RNA polymerase, dnaB protein, and lambda P protein form a functional complex required for lambda replication.  相似文献   

14.
Initiation of bidirectional replication from the origin of the Escherichia coli chromosome (oriC) proceeds through stages in which the components of the two replication forks are assembled. From a complex containing proteins dnaA, dnaB, and dnaC bound at oriC, the dnaB helicase moves in both directions to unwind the duplex. In the absence of replication, this unwinding generates a bubble at oriC coated by single strand binding protein. Addition of gyrase allows unwinding to proceed extensively in both directions from oriC at 60 base pairs/s/fork at 37 degrees C. This rate is sharply dependent on temperature and also stimulated by both primase and DNA polymerase III holoenzyme, even in the absence of DNA synthesis. Primer and DNA synthesis are efficient when coupled to template unwinding. DNA synthesis proceeds bidirectionally from oriC at a rate limited by unwinding. With extensive unwinding preceding DNA synthesis, initiations are not limited to oriC.  相似文献   

15.
The tsr gene of Escherichia coli, located at approximately 99 min on the chromosomal map, encodes a methyl-accepting protein that serves as the chemoreceptor and signal transducer for chemotactic responses to serine and several repellents. To determine whether any other chemotaxis or motility genes were located in the tsr region, we constructed and characterized two lambda tsr transducing phages that each contain about 12 kilobases of chromosomal material adjacent to tsr. lambda tsr70 carries sequences from the promoter-proximal side of tsr; lambda tsr72 carries sequences from the promoter-distal side of tsr. Restriction maps of the bacterial inserts in these phages and Southern hybridization analyses of the bacterial chromosome indicated that the tsr gene is transcribed in the counterclockwise direction on the genetic map. Insert deletions were isolated in lambda tsr70 and transferred into the host chromosome to examine the null phenotype of tsr. All such strains exhibited wild-type swimming patterns and chemotactic responses to a variety of stimuli, but were specifically defective in serine taxis and other Tsr-mediated responses. In addition, UV programming experiments demonstrated that Tsr and several of its presumptive degradation products were the only bacterial proteins encoded by lambda tsr70 and lambda tsr72 that required host FlbB/FlaI function for expression. These findings indicate that there are probably no other chemotaxis-related genes in the tsr region. A series of tsr point mutations were isolated by propagating lambda tsr70 on a mutD host and used to construct a fine-structure map of the tsr locus. These mutations should prove valuable in exploring structure-function relationships in the Tsr transducer.  相似文献   

16.
17.
In the Escherichia coli dnaB mutant BT165/70 were observed two types of temperature sensitivity of DNA replication: one slow but irreversible, occurring before the initiation of DNA replication, and the other instant but reversible, occurring during replication. These two types of temperature sensitivity appear to result from the single dnaB mutation. The observation suggests two different states of the dnaB gene product within the cell. Interaction of the dnaB protein with other components of the hypothetical replication complex is suggested. A temperature-insensitive revertant (second site mutation) of BT165/70 was isolated whose phenotype suggests an alteration in the interacting ability of the revertant protein.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号