首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
The expression of DNA topoisomerase II alpha and beta genes was studied in murine normal tissues. Northern blot analysis using probes specific for the two genes showed that the patterns of expression were different among 22 tissues of adult mice. Expression levels of topoisomerase II alpha gene were high in proliferating tissues, such as bone marrow and spleen, and undetectable or low in 17 other tissues. In contrast, high or intermediate expression of topoisomerase II beta gene was found in a variety of tissues (15) of adult mice, including those with no proliferating cells. Topoisomerase II gene expression was also studied during murine development. In whole embryos both genes were expressed at higher levels in early than late stages of embryogenesis. Heart, brain and liver of embryos two days before delivery, and these same tissues plus lung and thymus of newborn (1-day-old) mice expressed appreciable levels of the two genes. Interestingly, a post-natal induction of the beta gene expression was observed in the brain but not in the liver; conversely, the expression of the alpha gene was increased 1 day after birth in the liver but not in the brain. However, gene expression of a proliferation-associated enzyme, thymidylate synthase, was similar in these tissues between embryos and newborns. Thus, the two genes were differentially regulated in the post-natal period, and a tissue-specific role may be suggested for the two isoenzymes in the development of differentiated tissues such as the brain and liver. Based on the differential patterns of expression of the two isoforms, this analysis indicates that topoisomerase II alpha may be a specific marker of cell proliferation, whereas topoisomerase II beta may be implicated in functions of DNA metabolism other than replication.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
We and others have previously described the isolation of three human alpha (1,3)fucosyltransferase genes which form the basis of a nascent glycosyltransferase gene family. We now report the molecular cloning and expression of a fourth homologous human alpha (1,3)fucosyltransferase gene. When transfected into mammalian cells, this fucosyltransferase gene is capable of directing expression of the Lewis x (Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc), sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4 [Fuc alpha 1-->3]GlcNAc), and difucosyl sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3 Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc) epitopes. The enzyme shares 85% amino acid sequence identity with Fuc-TIII and 89% identity with Fuc-TV but differs substantially in its acceptor substrate requirements. Polymerase chain reaction analyses demonstrate that the gene is syntenic to Fuc-TIII and Fuc-TV on chromosome 19. Southern blot analyses of human genomic DNA demonstrate that these four alpha (1,3)fucosyltransferase genes account for all DNA sequences that cross-hybridize at low stringency with the Fuc-TIII catalytic domain. Using similar methods, a catalytic domain probe from Fuc-TIV identifies a new class of DNA fragments which do not cross-hybridize with the chromosome 19 fucosyltransferase probes. These results extend the molecular definition of a family of human alpha (1,3)fucosyltransferase genes and provide tools for examining fucosyltransferase gene expression.  相似文献   

15.
We enriched a fraction from nuclear extracts of murine erythroleukemia cells which contains a protein able to form stable complexes with the promoter region of the alpha 1-globin gene. Binding activity, which is present in mouse brain and a variety of cultured mouse and human cell lines, is not erythroid cell specific. Binding studies with alpha-globin gene promoter deletion mutants as well as DNase I footprinting and dimethyl sulfate protection studies showed that the factor bound specifically to the CCAAT box of the alpha 1 promoter. Enriched factor preparations exhibited weak binding to the promoter region of the beta maj-globin gene. This suggests that this protein could bind differentially to these two promoters in vivo. The enriched factor may be a ubiquitous nuclear protein involved in the differential regulation of the alpha 1- and beta maj-globin genes.  相似文献   

16.
17.
18.
19.
Preferential expression of reg I beta gene in human adult pancreas   总被引:3,自引:0,他引:3  
In human pancreas two genes, reg I alpha and reg I beta, have been characterized but only the reg I alpha protein has been isolated from human pancreatic secretion. To examine their respective physiological roles in fetal and adult pancreas we have compared the patterns of gene expression using a specific RT-PCR method. No progressive evolution in the two mRNAs levels was observed during fetal development (16--41 weeks). A discoordinate expression of the two genes was found with a higher level of reg I alpha mRNA in fetus and a higher level of regI beta in adult. In addition, if reg I alpha mRNA level was correlated with the expression of genes encoding exocrine proteins in adults, reg I beta mRNA level presented no correlation with any ductular, endocrine, or exocrine gene expression. In human pancreatic cell lines we showed the only expression of reg I beta gene and protein. All these data suggest that the two reg genes and proteins could play different roles in the pancreas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号