首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In combining fluorescence measurements with ligand binding assays, the versatility of the EGFP C-terminally fused to the human mu opioid receptor (EGFP-hMOR) has been exploited to notably improve the expression level of functional G protein-coupled receptors in Drosophila S2 cells. A selected array of efficient optimization approaches is presented herein, ranging from a cell-sorting method, allowing for a substantial enrichment in EGFP-hMOR expressing cells, to the addition of chemical and pharmacological chaperones, significantly enhancing the yield and the activity of the expressed receptors. Consistent with previous studies, significant discrepancies were observed between the total amounts of fluorescent receptors over a limited subpopulation capable of ligand binding, even after expression optimization. Subsequently, membrane isopycnic centrifugation experiments allowed to separate the ligand binding active from the non-active membrane fraction, the latter most probably containing misfolded receptors. Taken together, these results illustrate a coherent set of advantageous productive and preparative methods for the production of GPCRs in the highly valuable Drosophila S2 expression system. Karl Brillet and Bénédicte G. Perret contributed equally to this paper.  相似文献   

2.
G protein-coupled receptor activity is controlled by a number of factors including phosphorylation by the family of G protein-coupled receptor kinases. This phosphorylation is an important first step in desensitization of the receptor. The role of G protein-coupled receptor kinases in cellular physiology has been extensively studied, but less is known about their role in development. A Drosophila G protein-coupled receptor kinase mutant (gprk2(6936)) has developmental defects throughout the life cycle of the fly. This allows the opportunity to address G protein-coupled receptor kinase's function in vivo. Using a series of transgenic flies in which the wild type Gprk2 gene is expressed under the control of the hsp70 or germline-specific promoter, in combination with germline mosaic analysis, we have made a detailed analysis of the developmental stages in which Gprk2 expression is required and the tissues that must express Gprk2 for rescue of the gprk2(6936) mutant. These studies have shown that Gprk2 expression is required in the germline for proper formation of the anterior egg structures and for early embryogenesis. In the absence of maternal Gprk2 activity, zygotic expression affords partial rescue of egg hatching, suggesting that Gprk2 also plays an important role in late embryogenesis.  相似文献   

3.
Bitter taste has evolved as a central warning signal against the ingestion of potentially toxic substances appearing in the environment. The molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCR) called T2Rs and expressed at the surface of taste receptor cells. The functional characterisation of T2R receptors is far from been completed due to the difficulty to functionally express them in heterologous systems. Taking advantage of the parallelisms between the Caenorhabditis elegans (C. elegans) and mammalian GPCR signalling pathways, we developed a C. elegans-based expression system to express functional human and rodent GPCRs of the T2R family. We generated transgenic worms expressing T2Rs in ASI chemosensory neurons and performed behavioural assays using a variety of bitter tastants. As a proof of the concept, we generated transgenic worms expressing human T2R4 or its mouse ortholog T2R8 receptors, which respond to two bitter tastants previously characterised as their functional ligands, 6-n-propyl-2-thiouracil and denatoniun. As expected, expression of human T2R4 or its mouse ortholog T2R8 in ASI neurons counteracted the water-soluble avoidance to 6-n-propyl-2-thiouracil and denatoniun observed in control wild-type worms. The expression in ASI neurons of human T2R16, the ligand of which, phenyl-beta-d-glucopyranoside, belong to a chemically different group of bitter tastants, also counteracted the water-soluble avoidance to this compound observed in wild-type worms. These results indicate that C. elegans is a suitable heterologous expression system to express functional T2Rs providing a tool to efficiently search for specific taste receptor ligands and to extend our understanding of the molecular basis of gustation.  相似文献   

4.
Wu J  Capp C  Feng L  Hsieh TS 《Developmental biology》2008,323(1):130-142
Members of the RecQ family play critical roles in maintaining genome integrity. Mutations in human RecQL4 cause a rare genetic disorder, Rothmund-Thomson syndrome. Transgenic mice experiments showed that the RecQ4 null mutant causes embryonic lethality. Although biochemical evidence suggests that the Xenopus RecQ4 is required for the initiation of DNA replication in the oocyte extract, its biological functions during development remain to be elucidated. We present here our results in establishing the use of Drosophila as a model system to probe RecQ4 functions. Immunofluorescence experiments monitoring the cellular distribution of RecQ4 demonstrated that RecQ4 expression peaks during S phase, and RecQ4 is expressed only in tissues active in DNA replication, but not in quiescent cells. We have isolated Drosophila RecQ4 hypomorphic mutants, recqEP and recq423, which specifically reduce chorion gene amplification of follicle cells by 4-5 fold, resulting in thin and fragile eggshells, and female sterility. Quantitative analysis on amplification defects over a 14-kb domain in chorion gene cluster suggests that RecQ4 may have a specific function at or near the origin of replication. A null allele recq419 causes a failure in cell proliferation, decrease in DNA replication, chromosomal fragmentation, and lethality at the stage of first instar larvae. The mosaic analysis indicates that cell clones with homozygous recq419 fail to proliferate. These results indicate that RecQ4 is essential for viability and fertility, and is required for most aspects of DNA replication during development.  相似文献   

5.
Octopamine is an important neuroactive substance that modulates several physiological functions and behaviors of invertebrate species. Its biosynthesis involves two steps, one of which is catalyzed by Tyramine beta-hydroxylase enzyme (TBH). The Tbetah gene has been previously cloned from Drosophila melanogaster, and null mutations have been generated resulting in octopamine-less flies that show profound female sterility. Here, I show that ovulation process is defective in the mutant females resulting in blockage of mature oocytes within the ovaries. The phenotype is conditionally rescued by expressing a Tbetah cDNA under the control of a hsp70 promoter in adult females. Fertility of the mutant females is also restored when TBH is expressed, via the GAL4-UAS system, in cells of the CNS abdominal ganglion that express TBH and produce octopamine. This neuronal population differs from the dopamine- and serotonin-expressing cells indicating distinct patterns of expression and function of the three substances in the region. Finally, I demonstrate that these TBH-expressing cells project to the periphery where they innervate the ovaries and the oviducts of the reproductive system. The above results point to a neuronal focus that can synthesize and release octopamine in specific sites of the female reproductive system where the amine is required to trigger ovulation.  相似文献   

6.
We have optimized the expression level of 20 mammalian G protein-coupled receptors (GPCRs) in the methylotrophic yeast Pichia pastoris. We found that altering expression parameters, including growth temperature, and supplementation of the culture medium with specific GPCR ligands, histidine, and DMSO increased the amount of functional receptor, as assessed by ligand binding, by more than eightfold over standard expression conditions. Unexpectedly, we found that the overall amount of GPCR proteins expressed, in most cases, varied only marginally between standard and optimized expression conditions. Accordingly, the optimized expression conditions resulted in a marked fractional increase in the ratio of ligand binding-competent receptor to total expressed receptor. The results of this study suggest a general approach for increasing yields of functional mammalian GPCRs severalfold over standard expression conditions by using a set of optimized expression condition parameters that we have characterized for the Pichia expression system. Overall, we have more than doubled the number of GPCR targets that can be produced in our laboratories in sufficient amounts for structural studies.  相似文献   

7.
In order to reconstruct the establishment of the body pattern over time in Drosophila embryos, we have developed automated methods for detecting the age of an embryo on the basis of knowledge about its gene expression patterns. In this paper we perform temporal classification of confocal images of expression patterns of genes controlling segmentation by means of a neural network based on multi-valued neurons (MVN). MVN are artificial neural processing elements with complex-valued weights and high functionality, which proved to be efficient for solving the image recognition problems. The results obtained by this method confirm its efficiency for image recognition and indicate that the method can detect characteristic features of expression patterns which mark their development over time.  相似文献   

8.
Disrupting components of the ecdysone/EcR/USP signaling pathway in insects leads to morphological defects and developmental arrest. In adult Drosophila melanogaster decreased EcR function affects fertility, lifespan, behavior, learning, and memory; however we lack a clear understanding of how EcR/USP expression and activity impacts these phenotypes. To shed light on this issue, we characterized the wild-type expression patterns and activity of EcR/USP in individual tissues during early adult life. EcR and usp were expressed in numerous adult tissues, but receptor activity varied depending on tissue type and adult age. Receptor activity did not detectably change in response to mating status, environmental stress, ecdysone treatment or gender but is reduced when a constitutively inactive ecdysone receptor is present. Since only a subset of adult tissues expressing EcR and usp contain active receptors, it appears that an important adult function of EcR/USP in some tissues may be repression of genes containing EcRE's.  相似文献   

9.
The Drosophila brain is generated by a complex series of morphogenetic movements. To better understand brain development and to provide a guide for experimental manipulation of brain progenitors, we created a fate map using photoactivated gene expression to mark cells originating within specific mitotic domains and time-lapse microscopy to dynamically monitor their progeny. We show that mitotic domains 1, 5, and 9 give rise to discrete cell populations within specific regions of the brain. Two novel observations were that the antennal sensory system, composed of four disparate cell clusters, arose from mitotic domain 5 and that mitotic domain B produced glial cells, while neurons were produced from mitotic domains 1, 5, and 9. Time-lapse analysis of marked cells showed complex mitotic and migratory patterns for cells derived from these mitotic domains. Photoactivated gene expression was also used either to kill, to induce ectopic divisions, or to alter cell fate. This revealed that deficits were not repopulated, while ectopic cells were removed and extra glia were tolerated.  相似文献   

10.
11.
To identify ligands for orphan GPCRs, we searched novel neuropeptide genes in the Drosophila melanogaster genome. Here, we describe CNMa, a novel cyclic neuropeptide that is a highly potent and selective agonist for the orphan GPCR, CG33696 (CNMaR). Phylogenetic analysis revealed that arthropod species have two paralogous CNMaRs, but many taxa retain only one. Drosophila CNMa potently activates CNMaR-2 from Apis mellifera, suggesting both receptors are functional. Although CNMa is conserved in most arthropods, Lepidoptera lack the CNMa gene. However, they retain the CNMaR gene. Bombyx CNMaR showed low sensitivity to Drosophila CNMa, hinting toward the existence of additional CNMaR ligand(s).  相似文献   

12.
In the present review we discuss strategies that have been used for heterologous gene expression in Drosophila melanogaster Schneider 2 (S2) cells using plasmid vectors. Since the growth of S2 cells is not dependent on anchorage to solid substrates, these cells can be easily cultured in suspension in large volumes. The factors that most affect the growth and gene expression of S2 cells, namely cell line, cell passage, inoculum concentration, culture medium, temperature, dissolved oxygen concentration, pH, hydrodynamic forces and toxic metabolites, are discussed by comparison with other insect and mammalian cells. Gene expression, cell metabolism, culture medium formulation and parameters involved in cellular respiration are particularly emphasized. The experience of the authors with the successful expression of a biologically functional protein, the rabies virus glycoprotein (RVGP), by recombinant S2 cells is presented in the topics covered.  相似文献   

13.
Described in this report is a successful cloning and characterization of a functionally active Drosophila sulfakinin receptor designated DSK-R1. When expressed in mammalian cells, DSK-R1 was activated by a sulfated, Met(7-->Leu(7)-substituted analog of drosulfakinin-1, FDDY(SO(3)H)GHLRF-NH(2) ([Leu(7)]-DSK-1S). The interaction of [Leu(7)]-DSK-1S with DSK-R1 led to a dose-dependent intracellular calcium increase with an EC(50) in the low nanomolar range. The observed Ca(2+) signal predominantly resulted from activation of pertussis toxin (PTX)-insensitive signaling pathways pointing most likely to G(q/11) involvement in coupling to the activated receptor. The unsulfated [Leu(7)]-DSK-1 was ca. 3000-fold less potent than its sulfated counterpart which stresses the importance of the sulfate moiety for the biological activity of drosulfakinin. The DSK-R1 was specific for the insect sulfakinin since two related vertebrate sulfated peptides, human CCK-8 and gastrin-II, were found inactive when tested at concentrations up to 10(-5) M. To our knowledge, the cloned DSK-R1 receptor is the first functionally active Drosophila sulfakinin receptor reported to date.  相似文献   

14.
Polycomb group (PcG) proteins are negative regulators that maintain the expression of homeotic genes and affect cell proliferation. Pleiohomeotic (Pho) is a unique PcG member with a DNA-binding zinc finger motif and was proposed to recruit other PcG proteins to form a complex. The pho null mutants exhibited several mutant phenotypes such as the transformation of antennae to mesothoracic legs. We examined the effects of pho on the identification of ventral appendages and proximo-distal axis formation during postembryogenesis. In the antennal disc of the pho mutant, Antennapedia (Antp), which is a selector gene in determining leg identity, was ectopically expressed. The homothorax (hth), dachshund (dac) and Distal-less (Dll) genes involved in proximo-distal axis formation were also abnormally expressed in both the antennal and leg discs of the pho mutant. The engrailed (en) gene, which affects the formation of the anterior-posterior axis, was also misexpressed in the anterior compartment of antennal and leg discs. These mutant phenotypes were enhanced in the mutant background of Posterior sex combs (Psc) and pleiohomeotic-like (phol), which are another PcG genes. These results suggest that pho functions in maintaining expression of genes involved in the formation of ventral appendages and the proximo-distal axis.  相似文献   

15.
16.
17.
Trichoderma reesei is a well-known cellulase producer and widely applied in enzyme industry. To increase its ability to efficiently decompose cellulose, the beta-glucosidase activity of its enzyme cocktail needs to be enhanced. In this study, a beta-glucosidase I coding sequence from Penicillium decumbens was ligated with the cellobiohydrolase I (cbh1) promoter of T. reesei and introduced into the genome of T. reesei strain Rut-C30 by Agrobacterium-mediated transformation. In comparison to that from the parent strain, the beta-glucosidase activity of the enzyme complexes from two selected transformants increased 6- to 8-fold and their filter paper activity (FPAs) was enhanced by 30% on average. The transformant's saccharifying ability towards pretreated cornstalk was also significantly enhanced. To further confirm the effect of heterologous beta-glucosidase on the cellulase activity of T. reesei, the heterologously expressed pBGL1 was purified and added to the enzyme complex produced by T. reesei Rut-C30. Supplementation of the Rut-C30 enzyme complex with pBGL1 brought about 80% increase of glucose yield during the saccharification of pretreated cornstalk. Our results indicated that the heterologous expression of a beta-glucosidase gene in T. reesei might produce balanced cellulase preparation.  相似文献   

18.
Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination.  相似文献   

19.
20.
Following the complete sequencing of the genome of the free-living nematode, Caenorhabditis elegans, in 1998, rapid advances have been made in assigning functions to many genes. Forward and reverse genetics have been used to identify novel components of synaptic transmission as well as determine the key components of antiparasitic drug targets. The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels. The functions of these transmembrane proteins and the roles of the different members of their extensive subunit families are increasingly well characterised. The simple nervous system of C. elegans possesses one of the largest nicotinic acetylcholine receptor gene families known for any organism and a combination of genetic, microarray, physiological and reporter gene expression studies have added greatly to our understanding of the components of nematode muscle and neuronal nAChR subtypes. Chemistry-to-gene screens have identified five subunits that are components of nAChRs sensitive to the antiparasitic drug, levamisole. A novel, validated target acting downstream of the levamisole-sensitive nAChR has also been identified in such screens. Physiology and molecular biology studies on nAChRs of parasitic nematodes have also identified levamisole-sensitive and insensitive subtypes and further subdivisions are under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号