首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the early 1800s, the European roe deer (Capreolus capreolus) was probably extirpated from Switzerland, due to overhunting and deforestation. After a federal law was enacted in 1875 to protect lactating females and young, and limiting the hunting season, the roe deer successfully recovered and recolonized Switzerland. In this study, we use mitochondrial DNA and nuclear DNA markers to investigate the recolonization and assess contemporary genetic structure in relation to broad topographic features, in order to understand underlying ecological processes, inform future roe deer management strategies, and explore the opportunity for development of forensic traceability tools. The results concerning the recolonization origin support natural, multidirectional immigration from neighboring countries. We further demonstrate that there is evidence of weak genetic differentiation within Switzerland among topographic regions. Finally, we conclude that the genetic data support the recognition of a single roe deer management unit within Switzerland, within which there is a potential for broad‐scale geographic origin assignment using nuclear markers to support law enforcement.  相似文献   

2.
Aim Phylogeographical studies in the Brazilian Atlantic Forest (BAF) have mostly included species associated with forest habitats, whereas taxa associated with grassland and sand‐dune plant communities have so far been largely overlooked. This study examines the phylogeography of the orchid Epidendrum fulgens, which occurs on coastal sand dunes and granitic outcrops, in order to identify major genetic divergences or disjunctions across the range of the species and to investigate the genetic signatures of past range contractions and expansions. Location Southern and south‐eastern seashore vegetation along the BAF biome, and granitic and arenitic outcrops that occur in the subtropical grassland plant communities located south of the BAF. Methods Nine nuclear and four plastid microsatellite loci were used to genotype 424 individuals from 16 populations across the distributional range of E. fulgens. For both sets of markers, we estimated genetic diversity and population differentiation, testing for a north–south gradient of genetic diversity. The plastid haplotype network and a Bayesian assignment analysis of nuclear markers were used to infer population structure. Past demographic changes were investigated using a coalescence approach. Results A deep disjunction was found between northern populations within the BAF and southern populations outside the BAF that occur on granitic and arenitic outcrops. Recent demographic reductions were detected in northern populations on coastal sands. Such demographic changes were not expected for those populations, as previous studies with forest species had found evidence of population expansion in the same areas. Higher genetic diversity was found in southern populations on granite, in contrast to patterns observed in previous studies of forest species. Main conclusions The results are consistent with the long‐term persistence of E. fulgens. Bottlenecks were detected in populations from areas where population expansion events have been detected in other plant (and animal) species, suggesting that forest expansion after the Last Glacial Maximum played a role in the population fragmentation and decrease in genetic diversity in E. fulgens. A substantial genetic division in E. fulgens corresponds to the ‘Portal de Torres’, a region that demarcates the northern limits of subtropical grassland plant communities and the southern limits of the BAF.  相似文献   

3.
The circumpolar arctic fox Alopex lagopus thrives in cold climates and has a high migration rate involving long-distance movements. Thus, it differs from many temperate taxa that were subjected to cyclical restriction in glacial refugia during the Ice Ages. We investigated population history and genetic structure through mitochondrial control region variation in 191 arctic foxes from throughout the arctic. Several haplotypes had a Holarctic distribution and no phylogeographical structure was found. Furthermore, there was no difference in haplotype diversity between populations inhabiting previously glaciated and unglaciated regions. This suggests current gene flow among the studied populations, with the exception of those in Iceland, which is surrounded by year-round open water. Arctic foxes have often been separated into two ecotypes: 'lemming' and 'coastal'. An analysis of molecular variance suggested particularly high gene flow among populations of the 'lemming' ecotype. This could be explained by their higher migration rate and reduced fitness in migrants between ecotypes. A mismatch analysis indicated a sudden expansion in population size around 118 000 BP, which coincides with the last interglacial. We propose that glacial cycles affected the arctic fox in a way opposite to their effect on temperate species, with interglacials leading to short-term isolation in northern refugia.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 79–89.  相似文献   

4.
Brito PH 《Molecular ecology》2005,14(10):3077-3094
The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene.  相似文献   

5.
6.
Aim We study the population differentiation and phylogeography of the Temminck’s Stint (Calidris temminckii). Specifically, we seek signs of past and present population size changes and dispersal events and evaluate management and conservation unit status of the populations. We also study the possibility of introgression as the origin of two mitochondrial DNA (mtDNA) lineages found and estimate the divergence time of the lineages. Location Northern Eurasia. Methods We analysed 583 bp of mtDNA control region domains I and II and 11 microsatellite loci from 13 localities throughout the breeding range. In addition, we used mitochondrial cytochrome c oxidase subunit I (COI), a barcoding gene, to search for signs of introgression. Results More population differentiation was found from microsatellites than from mtDNA, although differentiation was weak in both markers. Signs of past population growth were observed, in addition to more recent decline in some areas. Both control region and COI sequences revealed two maternal lineages coexisting in Fennoscandia and in north‐west Siberia. No signs of introgression were detected. Lineage divergence time was estimated to have occurred during the glacial periods of Pleistocene. Main conclusions Slight differences in mtDNA and microsatellite differentiation and diversity may reflect different features – such as the mutation rate and effective population size – of the markers used, or female‐biased dispersal pattern and high male site‐fidelity of the species. The coexistence of the two mitochondrial lineages is most likely a consequence of post‐glacial mixing of two refugial Pleistocene populations. Based on genetic information alone, global conservation concerns are not imminent. However, fast decline of a marginal Bothnian Bay population and the smallness and remoteness of a Central Yakutian population warrant conservation actions.  相似文献   

7.
8.
9.
10.
Gene flow in natural populations may be strongly influenced by landscape features. The integration of landscape characteristics in population genetic studies may thus improve our understanding of population functioning. In this study, we investigated the population genetic structure and gene flow pattern for the common vole, Microtus arvalis, in a heterogeneous landscape characterised by strong spatial and temporal variation. The studied area is an intensive agricultural zone of approximately 500 km2 crossed by a motorway. We used individual-based Bayesian methods to define the number of population units and their spatial borders without prior delimitation of such units. Unexpectedly, we determined a single genetic unit that covered the entire area studied. In particular, the motorway considered as a likely barrier to dispersal was not associated with any spatial genetic discontinuity. Using computer simulations, we demonstrated that recent anthropogenic barriers to effective dispersal are difficult to detect through analysis of genetic variation for species with large effective population sizes. We observed a slight, but significant, pattern of isolation by distance over the whole study site. Spatial autocorrelation analyses detected genetic structuring on a local scale, most probably due to the social organisation of the study species. Overall, our analysis suggests intense small-scale dispersal associated with a large effective population size. High dispersal rates may be imposed by the strong spatio-temporal heterogeneity of habitat quality, which characterises intensive agroecosystems.  相似文献   

11.
The impact of Quaternary glaciation on the development of phylogeographic structure in plant species is well documented. In unglaciated landscapes, phylogeographic patterns tend to reflect processes relating to persistence and stochasticity, yet other factors, associated with the palaeogeographical history of the landscape, including geomorphological events, can also have a significant influence. The unglaciated landscape of south‐western Western Australia is an ideal location to observe these ancient drivers of lineage diversification, with tectonic activity associated with the Darling Fault in the late Pliocene attributed to patterns of deep phylogeographic divergence in a widespread tree from this region. Interestingly, other species within this region have not shown this pattern and this palaeogeographical boundary therefore presents an opportunity to examine age and historical distribution of plant species endemic to this region. In this study, we assess patterns of genetic diversity and structure across 28 populations of the widespread shrub Banksia sessilis using three cpDNA markers and nine nuclear microsatellite markers. Sixteen cpDNA haplotypes were identified, comprising two major chloroplast DNA lineages that are estimated to have diverged in the Pliocene, approximately 3.3 million years ago. This timing coincides with major geomorphological processes in the landscape, including the separation of the Darling Plateau from the adjacent Swan Coastal Plain, as well as eustatic changes on the Swan Coastal Plain that are likely to have resulted in the physical isolation of historical plant lineages. Chloroplast lineages were broadly aligned with populations associated with older lateritic soils of the Darling Plateau and Geraldton sandplains or the younger sandy soils associated with the Swan Coastal Plain and Southern Coastline. This structural pattern of lateritic versus non‐lateritic division was not observed in the nuclear microsatellite data that identified three genetic clades that roughly corresponded to populations in the North, South, and Central portions of the distributions.  相似文献   

12.
Adelges cooleyi is a host-alternating, gall-making insect native to the Rocky Mountains and Cascade Mountains in western North America. The insect's primary hosts are Picea (spruce) species, and its secondary host is Pseudotsuga menziesii , Douglas fir. To determine whether there are large-scale patterns of genetic variation in this specialist insect, we created molecular phylogenies of geographically separate samples of A. cooleyi using sequence data from two mitochondrial (mtDNA) genes and amplified fragment length polymorphisms (AFLPs). Three divergent mtDNA lineages were identified. Analysis of mtDNA and AFLP genetic variation revealed that samples from southeastern Arizona are genetically isolated from all other samples. AFLP data identified possible gene flow between individuals from divergent mtDNA lineages in an area in the central Rocky Mountains. Factors that likely affected divergence within A. cooleyi were identified by comparing our conclusions with well-known changes in the distribution of vegetation in response to glaciations and previous phylogeographical work conducted on this specialist insect's host-plants. In addition to documenting previously unknown patterns of genetic variation in A. cooleyi , our work provides the basis for a testable hypothesis regarding the extent to which the distribution of variation in Picea and Pseudotsuga hosts mediates the distribution of genetic variation for this specialist insect.  相似文献   

13.
The present study considers the genetic structure and phylogeography of the smooth snake (Coronella austriaca) in Central Europe, as analyzed on the basis of 14 microsatellite markers and a 284‐bp fragment of cytochrome b. We found deep divergence between western and south‐eastern Poland, suggesting at least two different colonization routes for Central Europe, originating in at least two different refugia. The west/south‐east divide was reflected in the haplotype distribution and topology of phylogenetic trees as defined by mitochondrial DNA, and in population structuring seen in the admixture analysis of microsatellite data. The well supported western European clade suggests that another refugium might have existed. We also note the isolation‐by‐distance and moderate‐to‐pronounced structuring in the examined geographical demes. Our data fit the assumption of the recently suggested sex‐biased dispersal, in that we found a strong divide in the maternal line, as well as evidence for a small but existent gene flow based on biparentally inherited microsatellite markers. All studied populations were very similar in respect of allelic richness, observed and expected heterozygosities, and inbreeding coefficients. However, some genetic characteristics were different from those expected compared to a similar fine‐scale study of C. austriaca from Great Britain. In the present study, we observed heterozygosity deficit, high inbreeding, and low Garza–Williamson indices, suggesting a reduction in population size. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 195–210.  相似文献   

14.
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host‐race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant‐specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant‐transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains.  相似文献   

15.
The ant Formica exsecta has two types of colonies that exist in sympatry but usually as separate subpopulations: colonies with simple social organization and single queens (M type) or colonial networks with multiple queens (P type). We used both nuclear (DNA microsatellites) and mitochondrial markers to study the transition between the social types, and the contribution of males and females in gene flow within and between the types. Our results showed that the social types had different spatial genetic structures. The M subpopulations formed a fairly uniform population, whereas the P subpopulations were, on average, more differentiated from each other than from the nearby M subpopulations and could have been locally established from the M-type colonies, followed by philopatric behavior and restricted emigration of females. Thus, the relationship between the two social types resembles that of source (M type) and sink (P type) populations. The comparison of mitochondrial (phiST) and nuclear (FST) differentiation indicates that the dispersal rate of males is four to five times larger than that of females both among the P-type subpopulations and between the social types. Our results suggest that evolution toward complex social organization can have an important effect on genetic population structure through changes in dispersal behavior associated with different sociogenetic organizations.  相似文献   

16.
Liolaemus monticola is a mountain lizard species, with a widespread distribution from central Chile that displays several highly polymorphic chromosomal races. Our study determined the phylogeographic structuring and relationships among three chromosomal races of L. monticola in Chile. Mitochondrial DNA (mtDNA) sequences of the cytochrome b gene were examined using the following phylogenetic methods: maximum parsimony, maximum likelihood, Bayesian inference and nested clade phylogeographic analyses (NCPAs). These methods revealed two major monophyletic clades (north and south) in the L. monticola species, with non-overlapping geographical locations separated by the Maipo and Yeso rivers (except one hybrid, from a zone of secondary contact). The NCPA showed that a past fragmentation process likely resulted in the separation of the two clades. The southern clade includes all samples of the 'Southern, 2 n  = 34' race; the northern clade is comprised of all remaining derived chromosomal races: the 'Northern, 2 n  = 38–40 and the Multiple Fission, 2 n  = 42–44' races. Our results support the hypothesis of a geographical and genetic split resulting from allopatric processes caused by riparian barriers acting over a long time period. The inferred biogeographical scenario shows that populations have moved from the south to the north using the Andean mountains as the primary corridor for dispersal.  相似文献   

17.
Among tuco-tucos, Ctenomys rionegrensis is especially amenable to the study of the forces driving population differentiation because of the restricted geographic range it occupies in Uruguay. Within this limited area, the Rio Negro tuco-tuco is limited to sandy soils. It nonetheless exhibits remarkable variation in pelage color, including melanic, agouti, and dark-backed individuals. Two hypotheses have been put forth to explain this pattern: (1) local differentiation and fixation of alternative pelage types by genetic drift under limited gene flow; or (2) fixation by natural selection that may take place even in the presence of gene flow. A previous allozyme study rejected the genetic drift hypothesis on the basis of high inferred levels of migration. New estimates of gene flow from microsatellites and mitochondrial cytochrome b sequences were obtained for C. rionegrensis populations to further test these hypotheses. Much lower levels of gene flow were estimated with these more sensitive markers. Microsatellite-based estimates of gene flow are close to zero and may come closest to estimating current levels of migration. A lack of equilibrium between migration and genetic drift is also strongly suggested by the absence of an isolation-by-distance pattern found in all three genetic datasets. The microsatellite genotype data show that the species is strongly structured geographically, with subpopulations constituting distinct genetic entities. If current levels of gene flow are very low, as indicated by the new data, the local fixation of alternative alleles, including those responsible for pelage color polymorphism, is possible by drift alone. A scenario is thus proposed in which the species expanded in the recent past from a more restricted geographic range and has subsequently differentiated in near isolation, with genetic drift possibly playing a primary role in overall genetic differentiation. The local fixation of pelage color types could also be due to drift, but selection on this trait cannot be ruled out without direct analysis.  相似文献   

18.
Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self‐compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80–216 m) and an upland site (1010–1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (FST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation‐by‐distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ~10‐20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for bottleneck.  相似文献   

19.
The genetic population structure of the bumble bee Bombus pascuorum was studied using six microsatellite loci and a partial sequence of the mitochondrial gene cytochrome b . Eighteen populations from central and northern Europe were included in the analysis. Observed levels of genetic variability and heterozygosity were high. Estimates of population differentiation based on F - and Φ-statistics revealed significant genetic differentiation among B. pascuorum populations and suggest that two partially isolated gene pools, separated by the Alps, do exist. The distribution of mtDNA haplotypes supports this view and presents direct evidence for gene flow across the Alps. Estimates of the number of migrants exchanged among populations north of the Alps suggest that historical events may have left a strong imprint on population structure.  相似文献   

20.
Shifting drainage patterns in western North America, shaped by geological activity and changing global climates, have influenced the evolution of many aquatic taxa. We investigated the role of late Pleistocene high stands in pluvial Lake Lahontan on the genetic structure of Richardsonius egregius, a minnow endemic to the Lahontan Basin of the western Great Basin. We used the mitochondrial cytochrome b gene to generate a phylogeny and assess intraspecific genetic diversity, to estimate divergence times between clades, and to evaluate whether gene flow currently occurs. The results obtained show that R. egregius exhibits genetic divergence between eastern and western Lahontan Basin populations. Divergence time estimates show that intraspecific genetic diversification began in the Pliocene or early Pleistocene, before the pluvial lake high stands associated with the last glacial maximum. These results imply that the fluctuating water levels in pluvial Lake Lahontan had a minimal effect on shaping the genetic architecture of R. egregius. Coalescent analyses using the immigration with migration model show that contemporary gene flow between eastern and western Lahontan Basin populations does not occur. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 163–176.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号