首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
高效液相色谱分析银杏萜内酯的含量   总被引:3,自引:0,他引:3  
李典鹏  方宏  梁小燕  陈海珊  文永新   《广西植物》1999,19(3):282-284
用高效液相色谱法测定银杏叶及提取物中银杏内酯中A、B、C和白果内酯的含量。采用C18分离柱,示差检测器,甲醇:水(33:67)为流动相,方法回收率平均达97%以上,变异系数(CV)为2.1%。  相似文献   

2.
用乙醇对香椿叶粉末进行提取,树脂柱浓缩,真空冷冻干燥,甲醇溶解,制备香椿黄酮。用7.6 mol.L-1盐酸85℃水浴回流2 h进行水解,以反相ODS柱甲醇-水(体积比为50:50,磷酸调pH至2.53)为流动相,在波长368 nm处对香椿叶中的槲皮素进行分离、测定。结果表明:香椿叶中含槲皮素平均质量分数为1.28%,平均加样回收率为98.9%,RSD为1.75%,反相高效液相色谱法测定香椿叶中槲皮素含量操作简便易行、结果准确可靠。  相似文献   

3.
反相高效液相色谱在发酵制备琥珀酸中的应用   总被引:19,自引:2,他引:19  
对于生物法制备琥珀酸的微生物发酵体系,利用Alltech反相Prevail C18色谱柱,以25mmol/L磷酸二氢钾(pH2.5)作为流动相,在流速1mL/min时,于210nm处紫外检测器检测,能将发酵液中琥珀酸、甲酸、乙酸和乳酸完全分离并准确定量。琥珀酸等有机酸的回收率在96%~104%之间。本方法能够快速、精确测定发酵样品中主产物琥珀酸与其它有机酸含量。  相似文献   

4.
建立反相高效液相色谱测定厌氧菌代谢发酵有机酸产物(乙酸、乳酸)的方法并用于测定乳酸菌代谢发酵产物中的含量。反相高效液相方法是一种简单、准确、灵敏的方法,可用于同时定量测定厌氧菌的有机酸代谢产物。  相似文献   

5.
毛细管水解及反相高效液相色谱分析蛋白质的氨基酸组成   总被引:1,自引:0,他引:1  
  相似文献   

6.
反相高效液相色谱法测定烟叶中的游离氨基酸   总被引:3,自引:1,他引:3  
用不同浓度的乙醇溶液提取烟样中的游离氨基酸 ,结果显示 ,存在最佳的乙醇溶液浓度 ,使烟样中被提取的游离氨基酸总量最大 ;对比了活性炭、乙醚、5 %磺基水杨酸、阳离子交换柱的纯化效果 ,发现阳离子交换柱的纯化效果较其它三种试剂要好。在提取和纯化之后 ,采用OPA、FMOC联合在线衍生反相高效液相色谱法测定了烟样中的游离氨基酸 ,该方法使烟样中的氨基酸和亚氨基酸能被同时测定 ,并且分析方法的重现性和回收率均令人满意。最后用该方法对云南B2 F98(上部、橘黄、二等烟叶 ,98年产 )烟叶中的游离氨基酸进行了测定 ,有 15种氨基酸被测出 ,其中Pro含量最高 ,约占总量的 2 5 % ,Thr含量最低 ,约占总量的 1%。  相似文献   

7.
目的:采用反相高效液相色谱法(RP-HPLC)对聚乙二醇(PEG)修饰的水蛭素进行分析分离,用以分析修饰产物中不同修饰度水蛭素的组成和比例。方法:色谱柱为Hypersil C18,5μm,4.6mm×150mm;流动相A为H2O+0.01%的三氟乙酸,流动相B为乙腈+0.01%的三氟乙酸。40min内由10%-50%流动相B进行梯度洗脱,洗脱流速1mL/min,上样量50μL,检测波长为214nm。结果:在单甲基化PEG-丙酸琥珀酰亚胺和水蛭素摩尔比不同的的反应产物中,PEG1-水蛭素、PEG2-水蛭素均可以达到基线分离,且不同批次的反应产物进行RP-HPLC的重复性良好。结论:RP-HPLC可以有效地对PEG修饰的水蛭素产物进行分析分离,为PEG化水蛭素的长效、缓释剂型的开发提供技术支持。  相似文献   

8.
反相高效液相色谱法检测脂必妥片中洛伐他汀的含量   总被引:1,自引:0,他引:1  
对脂必妥片样品进行预处理,得到的混合物用薄层色谱、反相高效液相色谱法进行定性、定量分析,建立检测其含量的方法。当色谱条件为色谱柱:Kromasil(C18250 mm×4.6 mm,5μm);流动相体积比:乙腈∶水为85∶15,;流速:1.0 ml.min-1;检测波长:420 nm;柱温:30℃;测定结果表明被测峰和其它峰可完全分离,在每毫升10.21~200.03μg内具有良好的线性关系,r=0.9997,测得其中洛伐他汀含量为0.25%,回收率:97.73%,RSD:0.56%。这种方法准确、可靠,可用于含洛伐他汀药品的质量控制。  相似文献   

9.
目的:建立RP-HPLC测定花椒中芦丁与槲皮素含量的方法,并对不同种花椒的中芦丁与槲皮素含量进行测定与比较。方法:Zorbax Eclipse C18色谱柱(150 mm×4.6 mm,5μm),流动相∶甲醇-0.4%磷酸(50∶50);流速1 mL/min;检测波长:360 nm;柱温25℃。结果:芦丁在0.25~5.0μg,r=0.999 9峰面积与质量浓度呈良好的线性关系;平均回收率为99.1%,RSD为4.3%(n=3)。槲皮素在0.25~0.5μg,r=0.999 9峰面积与质量浓度呈良好的线性关系;平均回收率为111.2%,RSD为5.1%(n=3)。结论:该方法可用于花椒中芦丁和槲皮素的测定。测定结果表明,韩城红花椒中芦丁含量最高,茂汉红花椒次之,四川青花椒较少,云南青花椒最低。槲皮素在韩城红花椒中含量较高,在其他三种花椒中差别不大。  相似文献   

10.
本文建立了反相高效液相色谱快速测定青蒿中青蒿酸含量的方法。色谱条件为:Diamonsil C18色谱柱(250 mm×4.6 mm,5μm),柱温为(30±1)℃,流动相采用乙腈与0.2%磷酸水溶液混合液(体积比65:35),流速1 mL/min,检测波长220 nm。标准曲线回归方程:Y=8.784573×10-8X-6.443559×10-5,r=0.9997,青蒿酸回收率为102.4%。实验证明该方法稳定可靠、精密度高、重现性好、简单可行,适用于青蒿酸的分析检测。  相似文献   

11.
提出了一种反相液相色谱法分析芦荟制品中有机酸的含量。采用C18 RP为色谱分离柱,磷酸盐溶液与乙腈作流动相;芦荟制品经简单处理后直接进行分离定量,在10min内把其中的苹果酸、乳酸和富马酸等完全分离定量,各种酸的回收率均大于98%。经多次实验证明:该方法是测定芦荟制品中有机酸的快速、准确和有效的定量方法。  相似文献   

12.
本文报告了采用高效液相色谱法反相梯度洗脱,邻苯二甲醛和β-巯基乙醇柱前衍生化,荧光检测分血浆游离氨基酸。实验采用线性洗脱,在50分钟内可同时测定18种氨基酸,血浆样品的预处理简单,衍生化反应的时间仅需1分30秒,血浆样品的实际进样量少于1μl。本测定方法的精确度高,各个氨基酸保留时间的变异系数平均为0.89%±0.45%(SD),峰面积的变异系数平均为2.06%±1.76%(SD),各个氨基酸的浓度在15—150μmol/L的范围中,线性关系的相关系数平均为0.985±0.0305(SD)。准确性好,各个氨基酸的回收率平均为97.6%±5.1%(SD)。实验还讨论了氨基酸分离时溶液pH值、柱温、离心速度等因素对分析结果的影响。  相似文献   

13.
Ginkgo biloba L. is one of the oldest unevolved tree species on Earth. We isolated five polymorphic microsatellite loci from G. biloba using a dual‐suppression polymerase chain reaction technique. These loci provided microsatellite markers with high polymorphism ranging from three to 13 alleles per locus. The observed and expected heterozygosities ranged from 0.667 to 0.952 and from 0.640 to 0.897, respectively. The markers will contribute to research on the conservation, genetic diversity and mating patterns of G. biloba.  相似文献   

14.
Pandey  S.  Kumar  S.  Nagar  P.K. 《Photosynthetica》2003,41(4):505-511
Diurnal variation in net photosynthetic rate (P N) of three-year-old plants of Ginkgo biloba was studied under open, O (receiving full sunlight), net-shade, NS (40 % of photosynthetically active radiation, PAR), or greenhouse, G (25 % PAR) conditions. In all three conditions, P N was higher in morning along with stomatal conductance (g s), and intercellular CO2 concentration (C i), while leaf temperature and vapour pressure deficit were low. The O-plants exhibited a typical decline in P N during midday, which was not observed in NS-plants. This indicated a possible photoinhibition in O-plants as the ratio of variable to maximum fluorescence (Fv/Fm) and photosystem 2 (PS2) yield (PS2) values were higher in the NS- and G-plants. On the contrary, stomatal density and index, chlorophyll a/b ratio, leaf thickness, and density of mesophyll cells were greater in O-plants. Further, higher P N throughout the day along with higher relative growth rate under NS as compared to O and G suggested the better efficiency of Ginkgo plants under NS conditions. Therefore, this plant species could be grown at 40 % irradiance to meet the ever-increasing demand of leaf and also to increase its export potential.  相似文献   

15.
植物中来源于甘氨酸和丝氨酸的一碳单位转移给四氢叶酸用于四氢叶酸代谢物的生物合成.由于含量低、成份复杂以及稳定性差,植物组织中四氢叶酸代谢物和叶酸的定量分析一度是一个挑战性很强的课题.本研究旨在建立一种可靠方法测定对甲基基团要求不同的植物(例如累积甘氨酸甜菜碱的菠菜与不累积甘氨酸甜菜碱的拟南芥)中四氢叶酸代谢物和叶酸的含量,用于研究这些植物中通过叶酸途径的一碳单位通量.菠菜和拟南芥叶片在金色荧光灯下加液氮研磨,加入大鼠血浆轭合酶粗提物处理,提取物经叶酸结合蛋白琼脂糖亲和色谱柱纯化,用附有荧光和紫外检测器的高效液相色谱仪分离并测定四氢叶酸代谢物和叶酸的含量.菠菜和拟南芥叶片中单谷氨酸型N5-甲基四氢叶酸含量分别是252ng/g和64ng/g,而总N5-甲基四氢叶酸的含量分别是370ng/g和199ng/g.两种植物均检测到少量的四氢叶酸和N5-醛基四氢叶酸,但只在拟南芥叶片而非菠菜叶片中检测到叶酸.实验结果显示,菠菜中单谷氨酸型和多谷氨酸型N5-甲基四氢叶酸的含量均比拟南芥显著增多.这种样品制备和高效液相色谱方法适于测定植物中四氢叶酸代谢物和叶酸的含量.  相似文献   

16.
银杏叶片遭受光量子通量密度(PFD)为1200μmolm-2s-1的强光胁迫后,净光合速率(Pn)、气孔导度(Gs)、细胞间隙CO2浓度(Ci)、PSⅡ光化学效率(Fv/Fm)和表现量子效率(AQY)都下降,而叶片在505nm处的光吸收(A505)、初始荧光水平(Fo)和荧光的非光化学猝灭(qN)上升。在去除强光胁迫数小时之后,这些参数都不能完全恢复。这就表明,虽然强光能引起严重的光抑制,可能涉及依赖叶黄素循环的热耗散和一部分PSⅡ反应中心的失活及破坏,但是导致光合速率降低的主要因素仍然是气孔导度的降低。  相似文献   

17.
《Reproductive biology》2021,21(4):100568
This minireview will briefly outline the basic knowledge concerning the provenance, biological active constituents of ginkgo (Ginkgo biloba, L.) and its general health effects. Ginkgo has been shown to affect female reproductive functions: it can affect ovarian folliculo- and oogenesis, embryogenesis, promote ovarian granulosa cell apoptosis, reduce their proliferation and the release of ovarian hormones. Usually, ginkgo extract mainly suppresses, but its constituents like amifostine, leuprorelin, quercetin and kaempherol can promote ovarian functions. This may indicate the existence of anti-reproductive ginkgo constituent(s), such as ginkgolide B and allopregnenolone which, like ginkgo extract, can promote ovarian cell apoptosis and suppress ovarian follicullogenesis and oogenesis. Ginkgo effects could be mediated by an action on brain functions, ovarian steroidogenesis, oxidative processes, intracellular regulators of ovarian cell proliferation and apoptosis and GABA receptors. Ginkgo and its molecules, ginkgolide B and allopregnenolone can be useful for prevention and treatment of reproduction-related disorders like ovarian cancer, ovarian ischemia and menopausal syndrome. On the other hand, its constituents amifostine, leuprorelin, quercetin and kaempherol could be potentially applicable as biostimulators of female reproductive processes in human and veterinary medicine and animal production. Nevertheless, application of ginkgo is still limited by insufficient or contradictory knowledge concerning its active constituents, characters, targets and mediators of its action and their functional interrelationships. Impact of ginkgo action on reproductive organs other than ovaries remains largely unknown. Addressing these issues with proper animal and clinical studies could help to understand the distinct efficacy and consequences of medical application of ginkgo.  相似文献   

18.
为了探索同时测定荷叶茶及饮片中6种黄酮类成分(芦丁、金丝桃苷、紫云英苷、槲皮素、山奈素和异鼠李素)含量的方法,本研究以8种不同的荷叶样本为材料,采用高效液相色谱分析法对6种黄酮类成分进行了同时测定。样品经过前处理,以0.5%甲酸-水(A)和0.1%甲酸-乙腈(B)作为流动相进行梯度洗脱,流速为1mL/min,柱温为25℃,进样量为20μL,经Agilent TC-C18(2)(150mm×4.6mm,5μm)色谱柱分离,于360nm波长处检测,结果显示,芦丁、金丝桃苷、紫云英苷、槲皮素、山奈酚、异鼠李素6种黄酮类成分分别在1.6~160、1.8~180、2.16~216、1.4~140、2.12~212、1.6~160μg/mL浓度范围内有良好的线性关系(R20.9992),其检测稳定性、重复性、日内精密度、日间精密度以及加样回收率的RSD均小于2%。进一步用该方法对不同来源的8个荷叶样本进行检测,结果显示荷叶样本中6种黄酮类成分含量以槲皮素最高,并且以样本G荷叶茶(购自G公司,批号为130802)的槲皮素含量最高。本研究建立的同时测定6种荷叶黄酮类成分含量的方法快速、准确,可为荷叶有效成分的检测和质量控制提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号