首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific radioimmunoassays were used to demonstrate the synthesis by the guinea pig trachea of 6-keto PGF, TxB2, and PGF in addition to PGE2. The rank order of both spontaneous and stimulated release was PGE2 > PGF2α > 6-keto PGF = TxB2. Ovalbumin-induced prostanoid release from sensitized tissue was antigen-specific. The release was unlikely to be a secondary consequence of tracheal contraction since incubations with calcium ionophore A23187, at a concentration which produces an equivalent magnitude of contraction of sensitized trachea, did not induce a significant PG or Tx production. In contrast, significantly higher prostanoid synthesis was induced by A23187 in unsensitized than sensitized trachea. Thus sensitization altered the profile of arachidonic acid metabolism evoked by the ionophore.  相似文献   

2.
Treatment of isolated rat Type II pneumocytes with Escherichia coli lipopolysaccharide (LPS) induces a number of ultra-structural changes which become evident after 60 min of incubation. By using post-embedding immunolabeling methods and electron microscopy, we have followed the fate of LPS after different times of incubation. After an initial period of accumulation in the pneumocyte microvilli, the LPS molecules enter the cytoplasm, forming discrete patches which are dispersed in some areas. After longer incubation times, LPS localize in condensed chromatin-free areas inside the nuclei. LPS micelles were visualized after freeze-fracture and compared with the LPS-labeled membrane areas, showing that LPS micelles aggregate in particular membrane zones. The sugar-specific staining in microvilli areas, where Maclura pomifera agglutinin (MPA)-gold particles bind, indicates the presence of galactose derivatives in these membrane structures. Pre-treatment of pneumocytes with LPS inhibited the MPA-gold labeling, suggesting a relation between the MPA receptor and a possible LPS receptor. Finally, double immunolabeling experiments indicated an apparent LPS-tubulin association in some particular membrane regions, which could not be observed when LPS and actin were co-localized.  相似文献   

3.
Glycerol utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozocinin-diabetic rats. With glucose in the incubation medium, incorporation of exogenous [1,3-14C]glycerol into disaturated phosphatidylcholine, total phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) was increased 4-fold in cells from diabetic rats. In the absence of glucose, glycerol incorporation was 5-fold greater than in its presence in cells from normal animals, but was further increased 2.2-fold in cells from diabetic rats. Insulin treatment of diabetic rats returned all incorporation rates to control values. The increased glycerol incorporation rates were not due to differences in either phospholipid turnover or the size of the glycerol 3-phosphate precursor pool. Kinetic analysis of glycerol entry into the acid-soluble cell fraction indicated that glycerol transport occurred largely by simple diffusion, and was not rate limiting for its entry into lipids. Glycerol entry into the total lipid fraction was saturable, reaching a Vmax of 48 pmol/micrograms DNA per h in normal cells and 120 pmol/micrograms DNA per h in cells from diabetic rats, with no change in the Km (0.31 mM). While glycerol oxidation was reduced 23% in cells from diabetic rats in the presence of glucose and by 44% in the absence of glucose, glycerol kinase activity in sonicates of cells from diabetic animals was increased 210% and was reversed by in vivo insulin treatment. These results suggest that glycerol utilization in type II pneumocytes is a hormonally regulated function of both glycerol oxidation and glycerol phosphorylation.  相似文献   

4.
Activation of cardiac mast cells has been shown to alter parasympathetic neuronal function via the activation of histamine receptors. The present study examined the ability of prostaglandins to alter the activity of guinea pig intracardiac neurons. Intracellular voltage recordings from whole mounts of the cardiac plexus showed that antigen-mediated mast cell degranulation produces an attenuation of the afterhyperpolarization (AHP), which was prevented by the phospholipase A2 inhibitor 5,8,11,14-eicosatetraynoic acid. Exogenous application of either PGD2 or PGE2 produced a biphasic change in the membrane potential and an inhibition of both AHP amplitude and duration. Examination of prostanoid receptors using bath perfusions (1 microM PGE2 and PGD2), specific agonists (BW245C, sulprostone, and butaprost), and antagonists (AH6809 and SC19220) found evidence for both the PGE2-specific EP2 and EP3 receptors, but not for EP1 or the PGD2-specific prostanoid (DP) receptors. Sulprostone was able to mimic the PGE2 responses in some cells, but not in all PGE2-sensitive cells. Butaprost was able to mimic the PG-induced hyperpolarization in some cells, but did not alter the AHP. Inhibition of specific potassium channels with either TEA, charybdotoxin, or apamin showed that neither TEA nor charybdotoxin could prevent the PGE2-induced AHP attenuation. Apamin alone inhibited AHP duration, with PGs having no further effect in these cells. These results demonstrate that guinea pig intracardiac neurons can be modulated by PG, most likely through either EP2, EP3, or potentially EP4 receptors, and this response is due, at least in part, to a reduction in small-conductance KCa currents.  相似文献   

5.
ATP-binding cassette transporter A1 (ABCA1) promotes transfer of cholesterol and phospholipid from cells to lipid-free serum apolipoproteins. ABCA1 mRNA and protein expression in primary cultures of rodent type II cells was sensitive to upregulation with 5 microM 9-cis-retinoic acid (9cRA) and 6.2 microM 22-hydroxycholesterol (22-OH). The increase in ABCA1 protein levels was time dependent and was maximal after 16 h of exposure to 9cRA + 22-OH. Inducible ABCA1 was also found in transformed cell lines of lung origin: WI38/VA13, A549, and NIH-H441 cells. Stimulation of ABCA1 in rat type II cells by 9cRA + 22-OH resulted in a four- or fivefold enhancement of efflux of radioactive phospholipid or cholesterol, respectively, from the pneumocytes to apolipoprotein AI (apo AI), whereas cAMP (0.3 mM) had no effect. ABCA1-mediated lipid efflux to apo AI was independent of the surfactant secretion pathway, inasmuch as upregulation of ABCA1 resulted in a reduction of secretagogue-stimulated surfactant phospholipid release. These studies demonstrate the presence of functional ABCA1 in type II cells from the lung.  相似文献   

6.
To study the effect of diabetes on pulmonary surfactant secretion, type II pneumocytes from adult streptozotocin-induced diabetic rats were placed in short-term culture. As opposed to a linear secretory rate by control type II cells, the secretory rate of type II cells from diabetic animals was biphasic reaching a minimum at 1.5 h. When exogenous surfactant containing radioactive phosphatidylcholine was added to the incubation media for 1.5 h, the cells from diabetic animals incorporated more exogenous phosphatidylcholine into lamellar bodies than control cells. This suggests that in the type II cell from diabetic animals, the rate of reutilization is greater than the rate of secretion until 1.5 h, at which time the rate of secretion becomes greater. The altered secretory pattern was reversed by in vivo insulin treatment 30 min prior to killing but not by the addition of insulin to the incubation media. When challenged by isoproterenol, a beta-adrenergic agonist, the secretory pattern of cells from diabetic animals was biphasic as observed with basal secretion; however, secretion was stimulated 30% as opposed to 100% increase in control cells. These data suggest that basal and stimulated secretion are altered in the cultured type II cell from diabetic animals and restored by in vivo but not in vitro insulin treatment.  相似文献   

7.
To determine whether type II pneumocytes isolated from diabetic animals could serve as a useful model for the study of surfactant phospholipid biosynthesis and its regulation, type II pneumocytes were isolated from adult streptozotocin-diabetic rats and placed in short-term primary culture. On a DNA basis, total cellular disaturated phosphatidylcholine (disaturated PC) and phosphatidylglycerol (PG) were decreased 36 and 66%, respectively, in type II cells from diabetic animals. 7 days of insulin treatment of diabetic rats returned the cellular disaturated PC and PG content to control values and increased the total cellular phosphatidylethanolamine (PE) content by 51%. The rates of glucose and acetate incorporation into disaturated PC per unit DNA were reduced 32 and 38%, respectively, in cells isolated from diabetic rats, while glycerol incorporation was increased by 143%. Insulin treatment of diabetic rats returned the glucose and glycerol incorporation rates to control values and increased acetate incorporation into disaturated PC by 66%. These data suggest that the biosynthesis of surfactant is altered by both diabetes mellitus and in vivo insulin treatment.  相似文献   

8.
Fetal type II pneumocytes in organotypic culture can oxidize both palmitate and glucose, with glucose being converted to CO2 at a rate substantially greater than that of palmitate. Glucose can be oxidized by both the pentose shunt pathway and the tricarboxylic acid cycle. Palmitate oxidation to CO2 is increased by carnitine and reduced by glucose and unsaturated fatty acids. These data suggest that glucose may be an important oxidative substrate during late fetal life and that fatty acids may play a relatively minor role in type II cell oxidative metabolism.  相似文献   

9.
10.
Type II cells isolated from the rat lung were maintained in culture for 8 days. The activity of alkaline phosphatase and lectin binding properties were studied. The alkaline phosphatase activity and the number of lamellar bodies were continually decreasing during the studied time period. The profile of lectin binding (Maclura pomifera and Ricinus communis) did not change during the cultivation.  相似文献   

11.
12.
The alveolar epithelial basement membrane is believed to play important roles in lung development, in maintaining normal alveolar architecture, and in guiding repair following lung injury. However, little is known about the formation of this structure, or of the mechanisms which mediate interactions between the epithelium and specific matrix macromolecules. Since type IV collagen is a major structural component of basement membranes, we investigated the production of type IV collagen-binding proteins by primary cultures of rat lung type II pneumocytes. Cultures were labeled for up to 24 h with 3H-labeled amino acids or [3H]mannose. Soluble collagen-binding proteins which accumulated in the culture medium were isolated by chromatography on collagen-Sepharose and examined by SDS-polyacrylamide gel electrophoresis. The major type IV collagen-binding protein (CBP1) was identified as fibronectin. We also identified a novel disulfide-bonded collagen-binding glycoprotein (CBP2; Mr = 45,000, reduced). This protein was not recognized by polyclonal antibodies to fibronectin, and showed no detectable binding to denatured type I collagen. The protein was resolved from fibronectin and partially purified by sequential chromatography on gelatin and type IV collagen-Sepharose. We suggest that type II pneumocyte-derived collagen-binding proteins contribute to the formation of the epithelial basement membrane and/or mediate the attachment of these cells to collagenous components of the extracellular matrix.  相似文献   

13.
Heterogeneity of beta-adrenoreceptors in guinea pig alveolar type II cells   总被引:1,自引:0,他引:1  
[3H]Dihydroalprenolol ([3H]DHA) binding to guinea pig alveolar type II cell membrane revealed the presence of both high (KD = 0.38 nM) and low (KD = 4.2 nM) affinity beta-adrenoreceptors. The low affinity site had a higher binding capacity (Bmax = 245.6 fmol/mg protein) than the high affinity site (Bmax = 71.7 fmol/mg protein). Displacement of [3H]DHA by practolol, a selective beta 1 agent, confirmed the existence of two species of adrenoreceptors, corresponding to 21% high affinity (beta 1) and 79% low affinity (beta 2), respectively.  相似文献   

14.
Surfactant sufficiency is dependent upon adequate synthesis and secretion of surfactant by the type II alveolar epithelium. Our laboratory has previously shown that basal secretion of surfactant phospholipid by differentiated fetal type II cells is lower than the basal secretion by adult cells. The purposes of this study were to determine if undifferentiated fetal type II cells can secrete phosphatidylcholine, to determine if terbutaline, a β-adrenergic agonist, stimulates secretion of surfactant phospholipids by undifferentiated fetal cells and to examine the effects of differentiation on secretion of surfactant phospholipids by fetal cells. Constitutive (basal) secretion of phosphatidylcholine increased linearly as a function of time in both undifferentiated and differentiated cells, but the rate of secretion was greater in differentiated cells than the rate of secretion in undifferentiated cells. Terbutaline caused a concentration-dependent increase in secretion in both undifferentiated and differentiated cells. Maximal effective concentration and EC50 were similar for undifferentiated (10−6 M, 0.2 μM) and differentiated (10−5 M, 0.3 μM) cells. The relative stimulation of secretion above control values was greater for undifferentiated cells. The kinetics of terbutaline stimulation varied significantly with cellular differentiation. Terbutaline resulted in 230% stimulation of secretion in undifferentiated cells at 30 min followed by a decline in the response to terbutaline at 60 to 120 min. In contrast, terbutaline stimulated secretion by differentiated cells showed a sustained linear increase from 0 to 120 min. This regulation of stimulated secretion is not present in undifferentiated cells. We conclude that undifferentiated type II cells are capable of the secretion of phosphatidylcholine and that terbutaline stimulates secretion by undifferentiated cells. Furthermore, basal secretion increases as a function of differentiation of type II cells and the regulation of stimulated secretion seen in differentiated cells is not developed in undifferentiated cells. The developmental regulation of the secretion of surfactant is complex and probably involves both excitatory as well as inhibitory mechanisms which develop at different stages of differentiation of the type II cell.  相似文献   

15.
The possibility that prostaglandins could serve as substrates for the guinea pig adrenal microsomal monooxygenase was investigated. The binding of PGE1 to adrenal microsomes was found to exhibit a reverse type I spectral change. Also PGE1 diminished the magnitude of type I spectrum elicited by cortisol binding to adrenal microsomes. The incubation of [3H]PGE1 or of [3H]PGE2 with adrenal microsomes supplemented with NADPH yielded primarily the respective 19-hydroxy metabolite. The enzymatic activity catalyzing this hydroxylation appears to be a typical monooxygenase, requiring NADPH for activity and being strongly inhibited by metyrapone, SKF 525A, and cytochrome c. Carbon monoxide at a ratio of 9:1 to oxygen moderately inhibited the hydroxylation of PGE1. Whereas the liver catalyzed the hydroxylation of PGE1 and PGA1 equally well, the adrenal microsomes preferentially catalyzed the hydroxylation of PGE1. This finding and the observation that α-naphthoflavone is a weak inhibitor of the adrenal PGE1 hydroxylation points to significant differences between the adrenal and liver prostaglandin hydroxylation activities. Cortisol, which is a substrate for adrenal monooxygenase, strongly inhibited PGE1 and PGE2 hydroxylation. By contrast, certain xenobiotics (ethylmorphine, hexobarbital, benzpyrene), which are also metabolized by adrenal microsomes, only slightly inhibited the hydroxylation of PGE1. Similarly, PGE1 only weakly inhibited ethylmorphine and benzphetamine demethylation and hexobarbital hydroxylation. These observations suggest that adrenal microsomes contain several monooxygenases with different affinities for prostaglandins and for the different xenobiotic substrates.  相似文献   

16.
A monoclonal antibody that identifies a membrane molecule unique in rat lung for type II alveolar epithelial cells was used to isolate these cells from enzymatically dispersed lung cells by fluorescence-activated cell sorting. Although multistep physical separation techniques have permitted the isolation of large quantities of these cells and flow cytometry has been used by others to isolate lamellar body-containing cells, the application of this antibody-directed sorting has distinct advantages. Because the marker molecule is expressed on immature type II cells prior to the development of lamellar bodies, the antibody will also permit their isolation and study.  相似文献   

17.
Here we report a 26- to 29-pS cation channel abundantly expressed in freshly isolated and primary cultured type II cells from rat or healthy human lungs. The channel was never spontaneously active in cell-attached patches but could be activated by cell permeabilization with beta-escin. Excised patch-clamp experiments revealed activation by Ca(2+) concentrations at the cytoplasmic side in the micromolar range. High concentrations of amiloride (>10 microM) at the extracellular side did not inhibit. The channel was equally permeable for K(+) and Na(+) but was essentially impermeable for Cl(-), Ca(2+), and Mg(2+). It was blocked by adenosine nucleotides (cytoplasmic side) with the following order of potency: AMP approximately ADP (EC(50) ATP > adenosine > cyclic AMP. The blocking effect of ATP was reproduced by its nonhydrolyzable analogs AMPPNP or ATP-gamma-S. GTP did not inhibit. Cd(2+) blocked the channel with an EC(50) approximately 55.5 nM. We conclude that type II cells express a Ca(2+)-dependent, nucleotide-inhibited, nonselective, and Ca(2+)-impermeable cation channel (NSC(Ca/AMP)) with tonically suppressed activity. RT-PCR confirmed expression of TRPM4b, a channel with functional characteristics almost identical with NSC(Ca/AMP). Potential physiological roles are discussed.  相似文献   

18.
Biochemical and morphological assays were developed to study surfactant protein A (SP-A) and lipid resecretion kinetics by isolated type II cells in vitro. After a 10-min uptake period with SP-A (3 microg/10(6) cells) in combination with liposomes (60 microg/10(6) cells), the cells were allowed to resecrete. After 5 min of resecretion, only 21.7 +/- 4.6% of the internalized SP-A remained intracellularly compared with 54 +/- 2.9% of the lipids. Extracellular SP-A present during the resecretion period partially inhibited resecretion (SP-A, 36% at 5 min; lipid, approximately 16% at 5 min). Lipid resecretion was also dependent on the SP-A concentration present during the uptake period. Although, as shown by confocal laser scanning microscopy, after a 10-min uptake period at 37 degrees C, most of the fluorescein isothiocyanate-labeled SP-A and rhodamine-phosphatidylethanolamine-labeled lipids colocalized within the cells, after an additional 10 min of resecretion, both the strength of the fluorescence signals and the extent of colocalization had markedly decreased. These data indicate that internalized lipid and SP-A can be resecreted rapidly by type II cells, likely via different pathways.  相似文献   

19.
Surfactant-associated protein-A (SP-A) is a component of pulmonary surfactant that acts as a cytokine through interaction with a cell-surface receptor (SPAR) on lung epithelial cells. SP-A regulates important physiological processes including surfactant secretion, gene expression, and protection against apoptosis. Tyrosine kinase and PI3K inhibitors block effects of SP-A, suggesting that SPAR may be a receptor tyrosine kinase and activate the PI3K-PKB/Akt pathway. Here we report that SP-A treatment leads to rapid tyrosine-specific phosphorylation of several important proteins in lung epithelial cells including insulin receptor substrate-1 (IRS-1), an upstream activator of PI3K. Analysis of anti-apoptotic signaling species downstream of IRS-1 showed activation of PKB/Akt but not of MAPK. Phosphorylation of IkappaB was minimally affected by SP-A as was NFkappaB gel shift activity. However, FKHR was rapidly phosphorylated in response to SP-A and its DNA-binding activity was significantly reduced. Since FKHR is pro-apoptotic, this may play an important role in signaling the anti-apoptotic effects of SP-A. Therefore, we have characterized survival-enhancing signaling activated by SP-A leading from SPAR through IRS-1, PI3K, PKB/Akt, and FKHR. The activity of this pathway may explain, in part, the resilience of type II cells to lung injury and their survival to repopulate alveolar epithelium after peripheral lung damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号