首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The subcellular distribution of dipeptidyl peptidase II (DPP II) in the rat kidney cortex, as determined by subfractionation of the mitochondrial/lysosomal fraction by rate sedimentation, indicated that this enzyme is mainly associated with the large, fast sedimenting lysosomes (protein droplets). The small lysosomes, on the other hand, displayed considerable size heterogeneity as indicated by the broad distribution of DPP II; cathepsin B, and a tripeptidyl peptidase active on Gly-Pro-Met-2-naphthylamide at pH 4 (TPP 4). Cathepsin D and N-acetyl-beta-D-glucosaminidase were limited primarily to the slower-sedimenting, small lysosomes. Equilibrium banding in sucrose gradients of the two main DPP II-containing lysosomal populations showed that the large lysosomes banded at a density of 1.235-1.24 g/ml while small lysosomes banded at three densities: 1.11-1.15 g/ml (lysosomal fragments), 1.20 g/ml (light lysosomes), and 1.235 g/ml (dense lysosomes). Identical distribution pattern were obtained for DPP II using either Lys-Ala-7-(4-methyl)coumarylamide or Gly-Pro-2-naphthylamide as the substrate at pH 5.5 and 5.0, respectively. Notably, DPP II and TPP 4, and cathepsin B as well, gave banding densities and distributions that were consistent with a lysosomal localization. Since triplets of the Gly-Pro-X-type released by the TPP 4 are ideal substrates for DPP II, the integrated action of tripeptidyl and dipeptidyl peptidases could make a novel contribution to the renal depolymerization and reabsorption of polypeptides, in particular the proline-rich, collagen-derived sequences that possess repeating-triplet primary structures.  相似文献   

2.
Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.  相似文献   

3.
Lysosomal serine and cysteine proteases are reported to play a role in collagen degradation. In this study, the activities of the lysosomal cysteine proteases cathepsin B and H, dipeptidyl peptidase I, and the serine protease tripeptidyl peptidase I and dipeptidyl peptidase II, all ascribed a role in collagen digestion, were compared with those of the aspartate protease cathepsin D, and lysosomal glycosidases in leukocytes from rheumatoid arthritis patients at different stages of the disease. In all patients the activities of cysteine protease cathepsin B, dipeptidyl peptidase I, aspartate protease cathepsin D, and two glycosidases were elevated, but the activities of the serine proteases tripeptidyl peptidase I, dipeptidyl peptidase II, and the cysteine protease cathepsin H was unchanged. The magnitude of the increased activity was correlated with the duration of the disease. Patients with long-standing RA (10 years or more) had higher cysteine protease activity in their leukocytes than did those with disease of shorter duration. This tendency suggests that elevated lysosomal cysteine protease activities, together with aspartate protease cathepsin D and lysosomal glycosidases (but not serine proteases), are associated with progression of rheumatoid arthritis.  相似文献   

4.
Dipeptidyl peptidase IV (DPP4) is a peptidase whose inhibition is beneficial in Type II diabetes treatment. Several evidences suggest potential implication of DPP4 in skin disorders such as psoriasis, keloids and fibrotic skin diseases where its inhibition could also be beneficial. DPP4 expression in human skin was described mainly in dermal fibroblasts and a subset of keratinocytes in the basal layer. Of importance in the perspective of preclinical experimentation, DPP4 distribution in skin of non-human primate species has not been documented. This report evidences unexpected differences between a set of human and cynomolgus monkey skin samples revealing a major expression of DPP4 in eccrine sweat glands of cynomolgus monkeys but not in humans. This represents a unique distinctive feature compared to the conserved expression of dipeptidyl peptidases 8 and 9 and potential relevant DPP4 substrates such as neuropeptide Y (NPY) and receptors (NPY-receptor 1 and Neurokinin receptor). Finally the observation that cathepsin D, an unrelated protease, shows the opposite expression compared to DPP4 (present in human but not in cynomolgus monkey eccrine sweat glands) could indicate that human eccrine sweat glands evolved a divergent protease repertoire compared to non-human primates. These unexpected differences in the eccrine sweat glands protease repertoire will need to be confirmed extending the analysis to a major number of donors but could imply possible biochemical divergences, reflecting the functional evolution of the glands and the control of their activity. Our findings also demonstrate that non-human primates studies aiming at understanding DPP4 function in skin biology are not readily translatable to human.  相似文献   

5.
The interactions between egg-white cystatin and the cysteine proteinases papain, human cathepsin B and bovine dipeptidyl peptidase I were studied. Cystatin was shown to be a competitive reversible inhibitor of cathepsin B (Ki 1.7 nM, k-1 about 2.3 X 10(-3) s-1). The inhibition of dipeptidyl peptidase I was shown to be reversible (Ki(app.) 0.22 nM, k-1 about 2.2 X 10(-3) s-1). Cystatin bound papain too tightly for Ki to be determined, but an upper limit of 5 pM was estimated. The association was a second-order process, with k+1 1.0 X 10(7) M-1 X s-1. Papain was shown to form equimolar complexes with cystatin. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of complexes formed between papain or cathepsin B and an excess of cystatin showed no peptide bond cleavage after incubation for 72 h. The reaction of the active-site thiol group of papain with 5,5'-dithiobis-(2-nitrobenzoic acid) at pH 8 and 2,2'-dithiobispyridine at pH 4 was blocked by complex-formation. Dipeptidyl peptidase I and papain were found to compete for binding to cystatin, contrary to a previous report. The two major isoelectric forms of cystatin were found to have similar specific inhibitory activities for papain, and similar affinities for papain, cathepsin B and dipeptidyl peptidase I. This, together with specific oxidation of the N-terminal serine residue with periodate, showed the N-terminal amino group of cystatin 1 to be unimportant for inhibition. General citraconylation of amino groups resulted in a large decrease in the affinity of cystatin for dipeptidyl peptidase I. It is concluded that the interaction of cystatin with cysteine proteinases has many characteristics similar to those of an inhibitor such as aprotinin with serine proteinases.  相似文献   

6.
To examine the distribution of prolyl endopeptidase (PEP), dipeptidyl peptidase IV (DPP IV), and dipeptidyl peptidase II (DPP II) in specific cell types, fibroblasts and epithelial cells were selectively cultured from middle ear mucosal tissues of guinea pigs. In fibroblasts, PEP had the highest activity, 12.28 +/- 4.00 nmole/min/mg protein (mean +/- SD), 45-fold higher than corresponding DPP II levels. In epithelial cells, DPP IV activity was the highest, 6.48 +/- 0.90 nmole/min/mg protein. This communication describes, for the first time, the distribution of the enzyme activities of PEP, DPP IV, and DPP II in fibroblasts and epithelial cells, and the occurrence of PEP in fibroblasts.  相似文献   

7.
Dipeptidyl peptidase II (DPP II) in normal rat lung was evaluated by the enzymes' ability to hydrolyze Lys-Ala or Lys-Pro derivatives of 4-methoxy-2-naphthylamine (MNA). For visualization of this activity, the liberated MNA was coupled with fast blue B for light microscopy (LM) or hexazotized pararosaniline with osmication for electron microscopy (EM). Granular to diffuse reaction product was noted in many lung cells in frozen sections for LM, including alveolar and tissue macrophages, fibroblasts, chondrocytes, bronchial and bronchiolar epithelial cells and mast cells. Reaction product at the EM level was seen in the lysosomal structures of the above cells, although lysosomal heterogeneity with regard to reactivity was noted. Cellular content of reaction product by EM correlated with LM staining intensity. Additional structures, not obviously reactive by LM, such as the lamellar bodies of type II cells and lysosomes in other cell types, were seen to contain reaction product ultrastructurally. A modified biochemical assay for the quantitation of DPP II in tissue homogenates was used to determine the activity of the enzyme in rat lung. Enzyme activity in polyacrylamide isoelectric focusing gels indicate that Lys-Ala-MNA was the more specific substrate but, by virtue of its rapid hydrolysis, Lys-Pro-MNA was more sensitive.  相似文献   

8.
We have measured for the first time, using specific substrates and specific fluorometric analyses, activities of three pathophysiologically important peptidases, i.e., dipeptidyl peptidase II, dipeptidyl peptidase IV, and prolyl endopeptidase in effusions from 45 patients with chronic otitis media with effusion. In 20 patients, DPP II and DPP IV were assayed simultaneously in effusions and sera. Activity of PEP was also estimated in effusions and sera from 25 patients. The mean values (+/- SD) of DPP II and DPP IV (n = 45) and PEP (n = 25) in effusion from patients with OME were 0.020 +/- 0.007, 0.66 +/- 0.04, and 0.040 +/- 0.006 nmole/min/mg protein, and 0.21 +/- 0.01, 16.2 +/- 1.87, and 1.90 +/- 0.23 nmole/min/ml of effusion, respectively. The mean values (+/- SD) for DPP II, DPP IV, and PEP in sera were 2.82 +/- 0.18, 54.8 +/- 1.23, and 3.73 +/- 0.33 nmole/min/ml of serum, respectively, which were similar to our previously reported values. Activities of DPP II, DPP IV, and PEP of serous effusions were comparable to those in serum. However, there was no significant correlation between their activities in serum and effusion. This may suggest that the major source of these enzymes in effusions may not be serum but the cells in the middle ear.  相似文献   

9.
Structure-activity investigations of product-like dipeptide analogues lacking the C-terminal carbonyl function resulted in potent and selective dipeptidyl peptidase II (DPP II) inhibitors. Dab-Pip has an IC(50)=0.13 microM for DPP II and a 7600-fold selectivity with respect to DPP IV. This compound will be highly valuable for the investigation of the biochemical function of DPP II.  相似文献   

10.
The cysteine protease dipeptidyl peptidase I (DPPI) activates granule-associated immune-cell serine proteases. The in vivo activator of DPPI itself is unknown; however, cathepsins L and S are candidates because they activate pro-DPPI in vitro. In this study, we tested whether cathepsins L and S activate pro-DPPI in vivo by characterizing DPPI activity and processing in cells lacking cathepsins L and S. DPPI activity, and the relative size and amounts of DPPI heavy and light chains, were identical in mast cells from wild-type and cathepsin L/S double-null mice. Furthermore, the activity of DPPI-dependent chymase was preserved in tissues of cathepsin L/S double-null mice. These results show that neither cathepsin L nor S is required for activation of DPPI and suggest that one or more additional proteases is responsible.  相似文献   

11.
Olsen C  Wagtmann N 《Gene》2002,299(1-2):185-193
We used an in silico approach to identify new cDNAs with homology to dipeptidyl peptidase IV (DPP IV). DPP IV (EC 3.4.14.5) is a serine protease with a rare enzyme activity having an important role in the regulation of various processes, such as blood glucose control and immune responses. Here, we report the identification and characterization of a novel DPP IV-like molecule, termed dipeptidyl peptidase-like protein 9 (DPP9). The deduced amino acid sequence of DPP9 has a serine protease motif, GWSYG, identical to that found in DPP IV. The presence of this motif, together with a conserved order and spacing of the Ser, Asp, and His residues that form the catalytic triad in DPP IV, places DPP9 in the "DPP IV gene family". Northern blots showed that DPP9 is ubiquitously expressed, with the highest expression levels in skeletal muscle, heart, and liver, and the lowest in brain. In vitro translation of the cloned full-length DPP9 sequence resulted in a DPP9 protein product that migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis at a position similar to the predicted protein size of 98 kDa. Consistent with the lack of predicted transmembrane domains and a signal sequence, DPP9 was found in a soluble, putative cytosolic form. A DPP9 orthologue in mice was identified by expressed sequence tag database searches and verified by cDNA cloning.  相似文献   

12.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel-nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS-PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH(2)-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues -180 to -175, NH(2)-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH(2)-terminal sequence, LDXNQLY, corresponding to residues -73 to -67 of the proregion peptide and thus were generated by removal of 126 residues from the NH(2)-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37 degrees C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (k(cat)/K(m)) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM(-)1 s(-1), respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing approximately 2 x 10(9) High Five cells.  相似文献   

13.
The effects of cholesterol (CHO) and cholesterol autooxidation derivatives (CAD) on the endocytosis of cationized ferritin (CF) by endothelial cells have been investigated. The effect of both substances on the activity of lysosomal enzymes dipeptidyl peptidase I (DPP I) and dipeptidyl peptidase II (DPP II) was also studied. Treatment of rats with CAD induced striking alterations in the ultrastructure of endothelial cells and makes it impossible to analyze the effect of this toxin on endocytosis processes. In contrast, CHO-treated cells displayed a good ultrastructural preservation and showed an increased ability to endocyte ferritin, as compared with controls. Both DPP I and DPP II activities increased after 3 weeks of CAD or CHO treatment. Our results indicate that although CHO damage endothelial cells, the most important effects could be attributed to CAD which usually accompanies CHO-supplemented diets.  相似文献   

14.
A dipeptidyl peptidase (DPP) was purified to homogeneity using lys-ala-beta-naphthylamide, the standard substrate for DPP II. The enzyme is a monomer with a Mr of 70kDa, pl 5.2, and Km 5.0 microM. Its terminal amino acid sequence was XXLLYAIQKRLF and was not identical to that of any known protein. Although initially considered to be a DPP II, the enzyme differed in some properties from classical DPP IIs. It had a pH optimum of 7.9, was not active on X-pro-naphthylamides, the usual substrates of mammalian DPP II, but was active on arg-arg- and asp-arg-naphthylamides, substrates acted on by the DPP III class of enzymes. This enzyme therefore combines properties typical of both DPP II and III and differs from all previously described DPPs. Activity on lys-ala-beta-naphthylamide was most abundant during aggregation and its activity is consistent with processing specific peptides during development.  相似文献   

15.
Dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) is a serine type protease with an important modulatory activity on a number of chemokines, neuropeptides and peptide hormones. It is also known as CD26 or adenosine deaminase (ADA; EC 3.5.4.4) binding protein. DPPIV has been demonstrated on the plasmamembranes of T cells and activated natural killer or B cells as well as on a number of endothelial and differentiated epithelial cells. A soluble form of CD26/DPPIV has been described in serum. Over the past few years, several related enzymes with similar dipeptidyl peptidase activity have been discovered, raising questions on the molecular origin(s) of serum dipeptidyl peptidase activity. Among them attractin, the human orthologue of the mouse mahogany protein, was postulated to be responsible for the majority of the DPPIV-like activity in serum. Using ADA-affinity chromatography, it is shown here that 95% of the serum dipeptidyl peptidase activity is associated with a protein with ADA-binding properties. The natural protein was purified in milligram quantities, allowing molecular characterization (N-terminal sequence, glycosylation type, CD-spectrum, pH and thermal stability) and comparison with CD26/DPPIV from other sources. The purified serum enzyme was confirmed as CD26.  相似文献   

16.
We examined the activities of peptidases in the synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Dipeptidyl peptidase II (DPP II), prolyl endopeptidase (PEP), and collagenase-like peptidase (CLP) activities were higher in knee joint synovial membrane from patients with RA than in that from patients with OA. DPP II and PEP activities in knee joint synovial membrane of patients with RA increased in parallel with the increase in joint fluid volume, whereas DPP IV activity decreased in parallel with the increase in joint fluid volume. These results suggest that these peptidases in the synovial membrane may play some role in immunological disturbances in the joints of patients with RA. Measurement of these peptidases in synovial membrane may be useful in the diagnosis of the severity of local joint inflammation.  相似文献   

17.
In this paper, we report the synthesis of diastereomerically pure N-(4-substituted-2,4-diaminobutanoyl)piperidines. These compounds were prepared to investigate the influence of the 4-substitution on the dipeptidyl peptidase II (DPP II) activity and selectivity of the parent N-(2,4-diaminobutanoyl)piperidine. The (4S)-methyl compound showed subnanomolar inhibition, comparable with the parent compound. The (4R)-methyl group or bigger substituents decreased the activity.  相似文献   

18.
Summary The occurrence of dipeptidyl peptidase (DPP) IV during development in Wistar rat organs was studied on day 10, 16 and 21 of gestation and on day 1, 4, 8, 13, 21, 26 and 60 after birth comparing immunohistochemistry and activity histochemistry. A polyclonal antibody, as well as monoclonal antibodies recognizing four different epitopes (A-D) of the DPP IV molecule, were employed for the immunohistochemical studies. In all investigated tissues, immunoreactivity with the polyclonal antibody appeared earlier than DPP IV activity and was already present on day 10 of gestation in the plasma membranes of embryonic and extraembryonic (decidual) cells. At these and other sites, e.g. brain capillary endothelium and tracheal or bronchial epithelium, immunoreactivity with the polyclonal antibody decreased or disappeared after birth and enzyme activity never developed. Immunoreactivity with the monoclonal antibodies appeared later than that with the polyclonal antibody, and mostly in those structures where DPP IV activity was subsequently found. The monoclonal antibody against epitope D showed a high reactivity in the epididymal duct, renal collecting ducts and in all domains of the hepatocyte plasma membrane, where neither DPP IV activity nor immunoreactivity with the other antibodies were observed. Our results also suggest that DPP IV might be present as a molecule before it becomes catalytically active and that immunoreactivity occurs at more sites than DPP IV activity. However, it cannot be excluded that the polyclonal antibody and the monoclonal antibody against the epitope D cross-react with as yet uncharacterized proteins, which express common epitopes during embryonic development, but are not present in the tissues of adult Wistar rats.  相似文献   

19.
The synthesis and biochemical evaluation of novel cyanothiazolidine inhibitors of dipeptidyl peptidase 4 (DPP4) is described. Their main structural feature is a constrained bicyclic core that prevents the intramolecular formation of inactive cyclic species. The inhibitors show good to moderate biochemical potency against DPP4 and display distinct selectivity profiles towards DPP7, DPP8 and DPP9 depending on their substitution.  相似文献   

20.
To obtain selective and potent inhibitors of dipeptidyl peptidases 8 and 9, we synthesized a series of substituted isoindolines as modified analogs of allo-Ile-isoindoline, the reference DPP8/9 inhibitor. The influence of phenyl substituents and different P2 residues on the inhibitors’ affinity toward other DPPs and more specifically, their potential to discriminate between DPP8 and DPP9 will be discussed. Within this series compound 8j was shown to be a potent and selective inhibitor of DPP8/9 with low activity toward DPP II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号