首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with [35S]methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silverstained electrophoretic pattern of proteins in the G2 phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G2 phase did not show such phase-specific changes. This result suggests that posttranslational processing of polypeptides occurs during or prior to the G2 phase. In the G1 and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A)+ RNA isolated at each phase. Three poly(A)+ RNAs increased in amount from the G1 to the S phase and one poly (A)+ RNA increased preferentially from the G2 phase to cytokinesis.  相似文献   

3.
A number of novel observations on ribosomal metabolism were made during gametic differentiation of Chlamydomonas reinhardi. Throughout the gametogenic process the amount of chloroplast and cytoplasmic ribosomes decreased steadily. The kinetics and extent of such decreases were different for each of the two ribosomal species. Comparable rRNA degradation accompanied this ribosome degradation. Concurrent with the substantial ribosome degradation was the synthesis of rRNA, ribosomal proteins and the assembly of new chloroplast and cytoplasmic ribosomes throughout gametogenesis. The newly synthesized chloroplast ribosomes exhibited distinctively faster turnover than their cytoplasmic counterpart. Cytoplasmic ribosomes, pulse-labeled in early gametogenic stages, retained label until differentiation was nearly complete even though a net decrease in the level of cytoplasmic ribosomes continued, indicating that the newly synthesized cytoplasmic ribosomes were preferentially retained during differentiation. Hence the regulation of ribosome metabolism during gametogenesis contrasts with the conservation of ribosomes obtained during vegetative growth of C. reinhardi and other organisms. This unique pattern of ribosome metabolism suggests that new ribosome synthesis is necessary during gametogenesis and that some specific structural or functional difference relating to the development stage of the life cycle might exist between degraded and newly synthesized ribosomes.  相似文献   

4.
Ribosomal RNA cistrons in Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena gracilis chloroplasts contain about 12 fg DNA of average density 1.686 g cm?3 and 1.7 pg RNA. The large (1.1 × 106 mol. wt) and small (0.56 × 106 mol. wt) ribosomal RNA components are coded for by separate cistrons, both of which band at a density of 1.696 g cm?3 in a CsCl gradient. About 6% of the chloroplast DNA codes for rRNA indicating that there are 240 cistrons for rRNA in each chloroplast or about three to six cistrons per chloroplast genome. Similar studies with rRNA from cytoplasmic ribosomes indicate that the cistrons for cytoplasmic rRNA band at a density of 1.716 g cm?3, denser than that of the main-band DNA, and that there are 1000 cistrons for cytoplasmic rRNA per cell. Fractionation of E. gracilis DNA on CsCl gradients and subsequent hybridization experiments, as well as melting curves of DNA-RNA hybrids, show that chloroplast rRNA does not anneal specifically with either the cistrons for cytoplasmic rRNA or any DNA in the dark-grown cell, in contrast to those results found in some higher plants.  相似文献   

5.
Cell cycle phase durations of cultures of Hymenomonas carterae Braarud and Fagerl, a coccolithophore, and Thalassiosira weissflogii Grun., a centric diatom, in temperature-, light- or nitrogen-limited balanced growth were determined using flow cytometry. Suboptimal temperature caused increases in the duration of all phases of the cell cycle (though not equally) in both species, and the increased generation time of nitrogen-limited cells of both species was due almost wholly to expansion of G1 phase. In H. carterae light limitation caused only G1 phase to expand, but in T. weissflogii both G2 + M and G1 were affected. These results are discussed in relation to cell division phasing patterns of these two species and to models of phytoplankton growth. Simultaneous measurements of protein and DNA on individual cells indicated that under all conditions, the protein content of cells in G1 was a constant proportion of that of G2 + M cells. Simultaneous measurements of RNA and protein on each cell indicated that the amounts of these two cell constituents were always tightly correlated. Under conditions of nitrogen limitation both protein and RNA per cell decreased to less than one-third of the levels found in nonlimited cells. This indicates, at least for nitrogen-replete cells, that neither protein nor RNA levels are likely to act as the trigger for cell cycle progression. Strict control by cell size is also unlikely since mean cell volume decreased as growth rates were limited by light and nitrogen supply, but increased with decreasing temperature.  相似文献   

6.
The COP9 signalosome (CSN) is a conserved protein complex known to be involved in developmental processes of eukaryotic organisms. Genetic disruption of a CSN gene causes arrest during early embryonic development in mice. The Csn8 subunit is the smallest and the least conserved subunit, being absent from the CSN complex of several fungal species. Nevertheless, Csn8 is an integral component of the CSN complex in higher eukaryotes, where it is essential for life. By characterizing the mouse embryonic fibroblasts (MEFs) that express Csn8 at a low level, we found that Csn8 plays an important role in maintaining the proper duration of the G1 phase of the cell cycle. A decreased level of Csn8, either in Csn8 hypomorphic MEFs or following siRNA-mediated knockdown in HeLa cells, accelerated cell growth rate. Csn8 hypomorphic MEFs exhibited a shortened G1 duration and affected expression of G1 regulators. In contrast to Csn8, down-regulation of Csn5 impaired cell proliferation. Csn5 proteins were found both as a component of the CSN complex and outside of CSN (Csn5-f), and the amount of Csn5-f relative to CSN was increased in the Csn8 hypomorphic cells. We conclude that CSN harbors both positive and negative regulators of the cell cycle and therefore is poised to influence the fate of a cell at the crossroad of cell division, differentiation, and senescence.  相似文献   

7.
Morphological changes in the organellar nucleoids and mitochondria of living Chlamydomonas reinhardtii Dang were examined during the cell cycle under conditions of 12:12 light:dark. The nucleoids were stained with SYBR‐Green I, and the mitochondria were stained with 3,3‐dihexyloxacarbocyanine iodide. An mocG33 mutant, which contains one large chloroplast nucleoid throughout the cell cycle, was used to distinguish between the mitochondrial and chloroplast nucleoids. Changes in the total levels of organellar DNA levels were assessed by real‐time PCR. Each of the G1, S, M, and Smt,cp phases was estimated. At the start of the light period, the new daughter cells were in G1 and contained about 30 mitochondrial and 10 chloroplast nucleoids, which were dispersed and had diameters of 0.1 and 0.2 μm, respectively. During the G1 phase of the light period, and at the start of the S phase, both nucleoids formed short thread‐like or bead‐like structures, probably divided, and increased continuously in number, concomitantly with DNA synthesis. The nucleoids probably became smaller due to the decrease in DNA of each particle and were indistinguishable. The cells in the S and M phases contained extremely high numbers of scattered nucleoids. However, in the G1 phase of the dark period, the nucleoids again formed short thread‐like or bead‐like structures, probably fused, and decreased in number. The mitochondria appeared as tangled sinuous structures that extended throughout the cytoplasm and resembled a single large mitochondrion. During the cell cycle, the numbers of mitochondrial nucleoids and sinuous structures varied relative to one another.  相似文献   

8.
9.
Conjugation, a sexual stage in the life cycle of Tetrahymena, is marked by the pairing of two cells of opposite mating types. Pairing establishes cytoplasmic continuity between the two cells and initiates the complex of nuclear events involved in sexual exchange. After mixing cells of opposite mating types in nonnutrient medium, a 3-hr refractory period ensues before pairing begins.A wave of cell division occurs concurrently with the onset of pairing. However, although all cells pair, the population does not double. This indicates that some cells do not divide and yet are capable of pairing. Apparently division per se is not required for pairing but does occur in most of the cells.Autoradiographic analysis demonstrates that the cells that divide before pairing were at a stage in the cell cycle beyond the initiation of macronuclear replication at the time they were transferred to nonnutrient medium. Cells that did not divide were in G1 at the time of shift-down. Thus, neither replication nor division is required to be able to fuse. However, since fusion occurs only in G1 and most cells are not in G1 at the time of shift-down, a traverse of the cell cycle is required.Shift-down induces G1 arrest and preparations for the mating reaction. Mixing the cells induces a synchronous wave of division for cells beyond the G1S interface. Preparations for the mating reaction occur independently of but simultaneous with the preparations for cell division.  相似文献   

10.
The transit time distribution at various points in the cell cycle of synchronized Chinese hamster ovary cells was determined from the mitotic index, [3H]thymidine labeling index and increase in cell number monitored at regular intervals after mitotic selection. Variation in G1 transit time compared with that for the total cell cycle indicates that variation in cell cycle transit time occurs mainly during G1 phase. the cycloheximide (5.0 μg/ml) and actinomycin D (3.0 μg/ml) restriction points occur 0.2 and 1.7 hr prior to entry into S phase, respectively. the transit time distributions are further characterized by the moments of the distributions. the variance (2nd moment about the mean) of the transit time distribution at the actinomycin D restriction point is similar to the variance of the transit time distribution at the G1/S border, thus variation in cell cycle transit time originates earlier than 1.7 hr prior to entry into S phase (i.e., the first 3/4 of G1). If G1 transit time variability and cell cycle control are related, then the results presented here indicate that the major regulatory events do not occur during late G1 phase.  相似文献   

11.
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.  相似文献   

12.
Effects of chlorambucil on human chromosomes   总被引:1,自引:0,他引:1  
No significant amount of chromosomal damage was found in the 48-h cultures of lymphocytes of 18 patients who had been treated with the bifunctional alkylating agent chlorambucil (CBC). However, there was suggestive evidence of chromatid damage (i.e. of types attributable to damage during or after DNA synthesis in the cell cycle). In marrow cells of 3 patients given a single large dose of chlorambucil (equivalent to 2 days' normal treatment) there was also suggestive evidence of induced chromatide-type damage.Extensive series of in vitro experiments yielded evidence that (a) exposure of human lymphocytes over the whole period of culture showed chromatid-type damage; (b) this damage increased sharply from concentrations of 0.5 μg/ml to3.0 μg/ml; (c) although chromatide-type damage always predominated, there was suggestive evidence also of chromosome-type aberrations attributable to damage occuring in the G0/G1 period, although some or all of this could be attributed to “derived” chromatid damage; (d) even if lymphocytes were only exposed during the G0 or G1 periods of the cycle, damage was found in the subsequent metaphases and it was almost entirely of the chromatid type; (e) much more damage occurred in lymphocytes exposed for varying periods to the drugs after stimulation by phytohaemagglutinins than in those exposed in whole blood, or in medium before stimulation; (f) damaged occurred in lymphocytes exposed to the drug while in S but not exposed only when in G2; (g) no evidence was found that unschaduled DNA synthesis during G0 or G1 was induced by the drug; (h) there appeared to be no delay caused by the drug in the time at which cells reached the first “S” phase in culture but there was some evidence consistent with prolongation of “S” in cells exposed in culture; (i) there was evidence that CBC alone could stimulate lymphocyte tto DNA synthesis, and that a few cells proceeded in the cycle to prophase, or even metaphase. However, there was a considerable amount of cell-killing during CBC-stimulated DNA synthesis.  相似文献   

13.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

14.
The protein product of the ras oncogene, Ha-ras (p21), is thought to be an important regulator of cell growth. The cytoplasmic relocalization of p21 in the cell during the cell cycle suggests a transient signaling role for this protein in association with its signal transduction function. Because of the importance of this role we examined spatial patterns in vivo of p21 expression at the protein and mRNA levels in hepatocytes during compensatory growth in rat liver following partial hepatectomy. A low level of p21 was immunolocalized on the cytoplasmic membrane of nonregenerating hepatocytes. The level of hepatic p21 increased significantly and without spatial restriction within the liver from 36 to 60 hr after partial hepatectomy (PH). p21 was localized in the cytoplasm of dividing hepatocytes and on the hepatic cytoplasmic membrane. The elevated p21 level decreased and was found mainly on hepatocyte plasma membranes by 96 hr after PH. Immunogold electron microscopy showed p21 localized over mitochondrial membranes and nuclei in nondividing regenerating hepatocytes. Approximately 50% of nonregenerating hepatocytes show nuclear localization of p21. This percentage changes with time following PH. The decrease in nuclear localization was accompanied with an increase in the low number of hepatocytes which demonstrated cytoplasmic localization in nondividing hepatocytes in regenerating liver. Flow cytometric analysis revealed a significant increase of p21 at 36 hr after PH which was 12 hr after the initial induction of ras mRNA. ras mRNA level increased 1.5-fold at 24 hr after PH and a maximum twofold induction was observed at 48 hr. Cell-cycle analysis of regenerating hepatocytes indicated a synchronized first peak of cell division 36–40 hr after PH. Dual parameter flow cytometry revealed that the level of p21 in hepatocytes in S phase and G2/M phase of the cell cycle was significantly higher than that in G0/G1 phase during regeneration. These findings suggest that p21 is important for the progression of regenerating hepatocytes to S phase and then to G2/M phase.  相似文献   

15.
DNA methylation is essential for mammalian development, X-chromosome inactivation, and imprinting yet aberrant methylation patterns are one of the most common features of transformed cells. One of the proposed causes for these defects in the methylation machinery is overexpression of one or more of the three known catalytically active DNA methyltransferases (DNMTs) 1, 3a and 3b, yet there are clearly examples in which overexpression is minimal or non-existent but global methylation anomalies persist. An alternative mechanism which could give rise to global methylation errors is the improper expression of one or more of the DNMTs during the cell cycle. To begin to study the latter possibility we examined the expression of the mRNAs for DNMT1, 3a and 3b during the cell cycle of normal and transformed cells. We found that DNMT1 and 3b levels were significantly downregulated in G0/G1 while DNMT3a mRNA levels were less sensitive to cell cycle alterations and were maintained at a slightly higher level in tumor lines compared to normal cell strains. Enzymatic activity assays revealed a similar decrease in the overall methylation capacity of the cells during G0/G1 arrest and again revealed that a tumor cell line maintained a higher methylation capacity during arrest than a normal cell strain. These results reveal a new level of control exerted over the cellular DNA methylation machinery, the loss of which provides an alternative mechanism for the genesis of the aberrant methylation patterns observed in tumor cells.  相似文献   

16.
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

17.
The phosphorylation of non-histone chromatin proteins in synchronized HeLa S3 cells was studied in 5 phases of the cell cycle: mitosis, G1, early and late S, and G2. The rate of non-histone chromatin protein phosphorylation was found to be maximal during G1 and G2, somewhat decreased during S phase, and almost 90% depressed during mitosis. Analysis of the phosphorylated non-histone chromatin proteins by SDS-acrylamide gel electrophoresis showed a heterogeneous pattern of phosphorylation as measured by labeling with 32P. Significant variations in the labeling pattern were seen during different stages of the cell cycle, and particular unique species appeared to be phosphorylated selectively during certain stages of the cycle.  相似文献   

18.
19.
Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest.  相似文献   

20.
Dyskerin is a highly conserved, nucleolar RNA-binding protein with established roles in small nuclear ribonucleoprotein biogenesis, telomerase and telomere maintenance and precursor rRNA processing. Telomerase is functional during S phase and the bulk of rRNA maturation occurs during G1 and S phases; both processes are inactivated during mitosis. Yet, we show that during the course of cell cycle progression, human dyskerin expression peaks during G2/M in parallel with the upregulation of pro-mitotic factors. Dyskerin redistributed from the nucleolus in interphase cells to the perichromosomal region during prometaphase, metaphase and anaphase. With continued anaphase progression, dyskerin also localized to the cytoplasm within the mid-pole region. Loss of dyskerin function via siRNA-mediated depletion promoted G2/M accumulation and this was accompanied by an increased mitotic index and activation of the spindle assembly checkpoint. Live cell imaging further revealed an array of mitotic defects including delayed prometaphase progression, a significantly increased incidence of multi-polar spindles, and anaphase bridges culminating in micronucleus formation. Together, these findings suggest that dyskerin is a highly dynamic protein throughout the cell cycle and increases the repertoire of fundamental cellular processes that are disrupted by absence of its normal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号