首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many microorganisms are reported to influence the corrosive behaviour of mild steel and stainless steel in different habitats. In this study, 40 bacterial strains were isolated from corroded mild steel and stainless steel coupons in the nitrate supplemented environments. The corrosion abilities of the isolates against the mild steel and stainless steel coupons were tested with or without additional nitrate sources. The presence of bacterial isolates alone stimulated the corrosion of mild steel coupons. Most of the bio-corrosion processes of mild steel coupons were mitigated by adding nitrate supplement with bacterial isolates. The effects of bacterial isolates and additional nitrogen sources on corrosion of stainless steels were varied. Not all bacterial isolates stimulated the corrosion on stainless steel during the study period. Unlike the effects on mild steel coupons, additional NaNO3 might stimulate, retard the corrosion rate by the bacterial isolates or have limited effects. Similar results were obtained when NH4NO3 was used. Phylogenetic analysis demonstrated that all isolates were closely related. The majority of the bacterial isolates from corroded metal coupons were identified as Bacillus species. Others were identified as Pseudomonas sp., Marinobacter sp., and Halomonas species. The results prove that the isolated aerobic microorganisms do play a role in the corrosion process of stainless and mild steel. Adding additional nitrate sources might be a tool to mitigate corrosion of mild steel which was stimulated by the presence of bacteria. However, to prevent the corrosion of stainless steels, it might need a trial and errors approach in each case.  相似文献   

2.
Marine prosthecate bacteria involved in the ennoblement of stainless steel   总被引:2,自引:0,他引:2  
Ennoblement, a phenomenon in which open-circuit potential is elevated to a noble value, triggers metal corrosion in the environment and is considered to be biologically catalysed. This study investigated the involvement of marine microorganisms in the ennoblement of stainless steel coupons in sea water pumped from Kamaishi Bay. Scanning electron microscopy (SEM) showed significant attachment of prosthecate bacteria on the surfaces of stainless steel coupons in the course of ennoblement. In denaturing gradient gel electrophoresis (DGGE) analyses of polymerase chain reaction-amplified bacterial 16S rDNA fragments, several major bands were detected from the surface of the ennobled coupons, including those affiliated with the alpha and gamma subclasses of the Proteobacteria. After these observations, bacterial strains were isolated from the surface of the ennobled coupon. The 16S rDNA analysis revealed that a bacterial isolate (designated PWB3) corresponded to a major DGGE band representing an alpha-Proteobacterial population; a database analysis showed that its closest relative was Rhodobium spp., albeit with low homology ( approximately 89%). SEM indicated that this bacterium was a prosthecate bacterium that was morphologically similar to those observed on the ennobled coupons. In pure culture of strain PWB3, stainless steel coupons were ennobled when the culture was supplemented with MnCl2. Manganese was recovered from the surface of the ennobled coupons after treatment with a reducing agent. These results suggest that the attachment of manganese-oxidizing prosthecate bacteria triggered the ennoblement of stainless steel in Kamaishi Bay sea water.  相似文献   

3.
The interactions of bacteria isolated from corroded copper coupons on thin films of copper evaporated onto germanium internal reflection elements were evaluated nondestructively in real time by attentuated total reflectance Fourier transform infrared spectroscopy. The films were stable in the presence of flowing or static sterile culture medium. When exposed to and colonized by the bacterium CCI 8, the copper thin film corroded. Corrosion was enhanced under quiescent conditions. In conjunction with corrosion of the copper thin film was an increase in the concentration of polysaccharide material at the copper-biofilm interface. A different bacterium (CCI 11) did not corrode the copper thin film, and the establishment of this bacterium on the copper surface prevented corrosion of the thin film by CCI 8.  相似文献   

4.
A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium.  相似文献   

5.
Microbial communities associated to biofilms promote corrosion of oil pipelines. The community structure of bacteria in the biofilm formed in oil pipelines is the basic knowledge to understand the complexity and mechanisms of metal corrosion. To assess bacterial diversity, biofilm samples were obtained from X52 steel coupons corroded after 40 days of exposure to normal operation and flow conditions. The biofilm samples were directly used to extract metagenomic DNA, which was used as template to amplify 16S ribosomal gene by PCR. The PCR products of 16S ribosomal gene were also employed as template for sulfate-reducing bacteria (SRB) specific nested-PCR and both PCR products were utilized for the construction of gene libraries. The V3 region of the 16S rRNA gene was also amplified to analyse the bacterial diversity by analysis of denaturing gradient gel electrophoresis (DGGE). Ribosomal library and DGGE profiles exhibited limited bacterial diversity, basically including Citrobacter spp., Enterobacter spp. and Halanaerobium spp. while Desulfovibrio alaskensis and a novel clade within the genus Desulfonatronovibrio were detected from the nested PCR library. The biofilm samples were also taken for the isolation of SRB. Desulfovibrio alaskensis and Desulfovibrio capillatus, as well as some strains related to Citrobacter were isolated. SRB consists in a very small proportion of the community and Desulfovibrio spp. were the relatively abundant groups among the SRB. This is the first study directly exploring bacterial diversity in corrosive biofilms associated to steel pipelines subjected to normal operation conditions.  相似文献   

6.
The possibility of using bacteria to drill metallic surfaces has been demonstrated using Staphylococcus sp., a facultative anaerobic bacterium, isolated from corroded copper piping. The experiment involved exposure of copper coupons (25 mm × 15 mm × 3 mm) to a culture of Staphylococcus sp. for a maximum period of 7 days. Coupons exposed to sterile bacterial growth medium were used as controls. Exposed coupons were removed intermittently and observed microscopically for the extent of drilling. The total pit area and volume on these coupons were determined using image analysis. The results showed that both the biomachined area and volume increased with the duration of coupon exposure. In the drilling experiment, a copper thin film 2 μm thick was perforated by this bacterium within a period of 7 days. In conclusion, the results suggested that bacteria can be used as a tool for machining metallic surfaces.  相似文献   

7.
Metallurgical features have been shown to play an important role in the attachment of microorganisms to metal surfaces. In the present study, the influence of the microstructure of as-received (AR) and heat-treated (HT) 1010 carbon steel on the initial attachment of bacteria was investigated. Heat treatment was carried out with the aim of increasing the grain size of the carbon steel coupons. Mirror-polished carbon steel coupons were immersed in a minimal medium inoculated with Escherichia coli (ATCC 25922) to investigate the early (15, 30 and 60?min) and relatively longer-term (4?h) stages of bacterial attachment. The results showed preferential colonisation of bacteria on the grain boundaries of the steel coupons. The bacterial attachment to AR steel coupons was relatively uniform compared to the HT steel coupons where an increased number of localised aggregates of bacteria were found. Quantitative analysis showed that the ratio of the total number of isolated (ie single) bacteria to the number of bacteria in aggregates was significantly higher on the AR coupons than the HT coupons. Longer-term immersion studies showed production of extracellular polymeric substances by the bacteria and corrosion at the grain boundaries on both types of steel coupon tested.  相似文献   

8.
Elemental iodine is produced in Japan from underground brine (fossil salt water). Carbon steel pipes in an iodine production facility at Chiba, Japan, for brine conveyance were found to corrode more rapidly than those in other facilities. The corroding activity of iodide-containing brine from the facility was examined by immersing carbon steel coupons in “native” and “filter-sterilized” brine samples. The dissolution of iron from the coupons immersed in native brine was threefold to fourfold higher than that in the filter-sterilized brine. Denaturing gradient gel electrophoresis analyses revealed that iodide-oxidizing bacteria (IOBs) were predominant in the coupon-containing native brine samples. IOBs were also detected in a corrosion deposit on the inner surface of a corroded pipe. These results strongly suggested the involvement of IOBs in the corrosion of the carbon steel pipes. Of the six bacterial strains isolated from a brine sample, four were capable of oxidizing iodide ion (I?) into molecular iodine (I2), and these strains were further phylogenetically classified into two groups. The iron-corroding activity of each of the isolates from the two groups was examined. Both strains corroded iron in the presence of potassium iodide in a concentration-dependent manner. This is the first report providing direct evidence that IOBs are involved in iron corrosion. Further, possible mechanisms by which IOBs corrode iron are discussed.  相似文献   

9.
A bacterium, designated CCI#8, that was isolated from a corroded copper coupon colonized both polished and unpolished copper surfaces under batch culture conditions. Atomic Force Microscopy (AFM) images revealed that the biofilm was heterogeneous in nature, both in depth and in cell distribution. Bacterial cells were shown to be associated with pits on the surface of the unpolished copper coupons. These observations support previous studies that CCI#8 is associated with the pitting corrosion of copper.  相似文献   

10.
从大庆原油样品中分离和初步筛选菌株   总被引:1,自引:0,他引:1  
目的:根据目标菌株的特性,应用选择培养基筛选出提高石油三次采油采收率的菌株,并对其进行相关性质的鉴定。方法:从大庆原油样品中经过富集培养,平板分离。结果:获得2株细菌,1号菌株属于假单胞菌属,2号菌株属于芽孢杆菌属。对两株细菌进行了定性分析,结果表明两株细菌均能产酸、产气、产表面活性剂。证明其具有降低原油黏度的作用。  相似文献   

11.
Abstract A screening of twenty-two marine isolates was made to examine their effects on corrosion of carbon steel ASTM A619. In batch cultures, sixteen of the isolates gave a lower corrosion than the control. Aerobic and anaerobic biofilm populations were formed by immersing iron coupons in natural seawater under aerobic and anaerobic conditions. The effects of the biofilms depended on a balance between the presence of oxygen and the type of population. An anaerobic population attached to the surface increased the corrosion rate if immersed in a suspension of Vibrio sp. DW1. The vibrio population probably 'protected' the anaerobic population from oxygen and may have provided nutrients, thereby creating conditions that allowed production of corrosive metabolites close to the metal. In contrast, coupons without a biofilm showed a decrease in the corrosion when immersed in the same vibrio suspension. The protective effect of a dense suspension of bacteria found earlier [5,6] was tested in situ in seawater. Iron coupons were immersed in dialysis bags with a suspension of Vibrio sp. DW1. Coupons immersed in dialysis bags with DW1 showed a lower degree of corrosion than coupons immersed in bags with seawater.  相似文献   

12.
The objective of this study was to compare the potential of mono-rhamnolipids (mono-RML) and di-rhamnolipids (di-RML) against biofilm formation on carbon steel coupons submitted to oil produced water for 14 days. The antibiofilm effect of the RML on the coupons was analyzed by scanning electron microscopy (SEM) and by epifluorescence microscopy, and the contact angle was measured using a goniometer. SEM analysis results showed that all RML congeners had effective antibiofilm action, as well as preliminary anticorrosion evaluation confirmed that all RML congeners prevented the metal deterioration. In more detail, epifluorescence microscopy showed that mono-RML were the most efficient congeners in preventing microorganism's adherence on the carbon steel metal. Image analyses indicate the presence of 15.9%, 3.4%, and <0.1% of viable particles in di-RML, mono/di-RML and mono-RML pretreatments, respectively, in comparison to control samples. Contact angle results showed that the crude carbon steel coupon presented hydrophobic character favoring hydrophobic molecules adhesion. We calculated the theoretical polarity of the RML congeners and verified that mono-RML (log P = 3.63) presented the most hydrophobic character. This had perfect correspondence to contact angle results, since mono-RML conditioning (58.2°) more significantly changed the contact angle compared with the conditioning with one of the most common surfactants used on oil industry (29.4°). Based on the results, it was concluded that rhamnolipids are efficient molecules to be used to avoid biofilm on carbon steel metal when submitted to oil produced water and that a higher proportion of mono-rhamnolipids is more indicated for this application.  相似文献   

13.
超低渗油藏微生物吞吐技术的矿场试验   总被引:3,自引:0,他引:3  
【目的】通过对渭北低渗油藏内源微生物的研究,考察分离纯化的内源解烃菌产生表面活性剂和降解原油的能力、岩心驱替增油效率,同时验证其在超低渗油田单井吞吐矿场实验的应用效果,探讨微生物采油技术在超低渗油田提高采收率的工艺和可行性。【方法】采集超低渗油藏的油水样,应用油平板进行产表面活性剂解烃菌的分离,通过生理生化特性和16S r RNA基因序列分析对菌株进行种属鉴定,评价其油藏环境适应性,利用内源-外源功能微生物复配体系进行原油降解,在填砂管和岩心物模上进行驱油实验,将优化好的微生物复配体系应用于现场实施单井吞吐工艺的实验。【结果】从渭北某区块超低渗油藏的原油样品中分离得到一株铜绿假单胞菌(Pseudomonas aeruginosa),命名为WB-001。该菌株可使发酵液的表面张力降至29.04 m N/m,使渭北原油蜡质含量降至8.48%。填砂管实验表明WB-001与外源枯草芽胞杆菌OPUS-HOB-001(Bacillus subtilis)复配后,驱油效率较单纯水驱提高了9.72%;岩心驱替实验较水驱提高12.54%。微生物单井吞吐措施后,平均日产油由措施前的0.42 t增加到0.89 t,累计增油44.47 t;原油降粘率为11.70%,降凝率为9.41%,采出水表面张力降低幅度为18.93%。【结论】通过详细的室内评估和成功的矿场实验,证明微生物采油技术在超低渗油藏有一定的应用可行性,并为后续规模化应用提供了理论基础和物质基础,为超低渗油田的高效精细开发探索一条新的途径。  相似文献   

14.

AISI Type 304 L stainless steel (SS) is a widely used material in industry due to its strength and resistance to corrosion. However, corrosion on SS is reported largely at welds or adjacent areas. Bacteria were observed to colonize preferentially near welds as a result of surface roughness. In the present study, the influence of another important metal surface condition on bacterial adhesion has been evaluated, i.e. substratum microstructure. Type 304 L SS weld samples were prepared and machined to separate weld metal, the heat affected zone (HAZ) and base metal regions. The coupons were molded in resin so that only the surfaces polished to a 3 p.m finish were exposed to the experimental medium with Pseudomonas sp. isolated from a corrosive environment in Japan. The coupons were exposed for varying durations. The area of bacterial attachment showed significant differences with time of exposure and; the type of coupons. Generally, the weld metal samples showed more attachment whilst the base metal showed the least. The area of attachment was inversely proportional to the average grain size of the three samples. As the bacteria started colonizing, attachment mainly occurred on the grain boundaries of the base metal (after 8h, 84.62% and 15.38% of the total number of bacteria attached in the field of view (FOV) at the grain boundary and matrix, respectively) and on the austenite‐ferrite interface in the weld metal (after 8h, 88.33% and 11.77% of the total number of bacteria attached in the FOV at the boundary and matrix, respectively). The weld area had more grains and hence more grain boundary/ unit area than the base metal, resulting in more bacterial attachment. SEM observations showed this increased attachment of Pseudomonas sp. resulted in the initiation of microbiologically influenced corrosion (MIC) on the weld coupons by 16 d. Therefore, the results provide data to support the fact that substratum microstructure influences bacterial attachment, which in turn leads to corrosion.  相似文献   

15.
Microorganisms tend to colonize on solid metal/alloy surface in natural environment leading to loss of utility. Microbiologically influenced corrosion or biocorrosion usually increases the corrosion rate of steel articles due to the presence of bacteria that accelerates the anodic and/or cathodic corrosion reaction rate without any significant change in the corrosion mechanism. An attempt was made in the present study to protect hot-dip galvanized steel from such attack of biocorrosion by means of chemically modifying the zinc coating. W–TiO2 composite was synthesized and incorporated into the zinc bath during the hot-dipping process. The surface morphology and elemental composition of the hot-dip galvanized coupons were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The antifouling characteristics of the coatings were analyzed in three different solutions including distilled water, seawater, and seawater containing biofilm scrapings under immersed conditions. Apart from electrochemical studies, the biocidal effect of the composite was evaluated by analyzing the extent of bacterial growth due to the presence and absence of the composite based on the analysis of total extracellular polymeric substance and total biomass using microtiter plate assay. The biofilm-forming bacteria formed on the surface of the coatings was cultured on Zobell Marine Agar plates and studied. The composite was found to be effective in controlling the growth of bacteria and formation of biofilm thereafter.  相似文献   

16.
Aims: To investigate the role of heterotrophic bacteria in the corrosion of galvanized steel in the presence of water. Methods and Results: Samples were taken from corroding galvanized steel pipes conveying water for specialist applications, and heterotrophic bacteria were isolated and cultured. The majority of bacteria were Gram‐negative aerobes and included Pseudomonas sp., Bacillus pumilus, Afipia spp. and Blastobacter denitrificans/Bradyrhizobium japonicum. Zinc tolerance was assessed through growth and zinc disc diffusion experiments. In general, zinc negatively influenced growth rates. An unidentified yeast also isolated from the system demonstrated a high tolerance to zinc at concentrations up to 4 g l?1. Coupon experiments were performed to assess corrosion by the bacteria on galvanized steel and steel coupons. The majority of isolates as pure culture biofilms (69%) accelerated corrosion of galvanized coupons, assessed as zinc release, relative to sterile control coupons (P < 0·05). Pure culture biofilms did not increase the corrosion of steel, with four isolates demonstrating protective effects. Conclusions: Pure culture biofilms of heterotrophic bacteria isolated from a corroding galvanized pipe system were found to accelerate the corrosion of galvanized steel coupons. Significance and Impact of the Study: Microbially influenced corrosion is a potential contributor to sporadically occurring failures in galvanized steel systems containing water. Management strategies should consider microbial control as a means for corrosion prevention in these systems.  相似文献   

17.
To obtain predominant bacteria degrading crude oil, we isolated some bacteria from waste soybean oil. Isolated bacterial strain had a marked tributyrin (C4:0) degrading activity as developed clear zone around the colony after incubation for 24h at 37 degrees C. It was identified as Klebsiella sp. Y6-1 by analysis of 16S rRNA gene. Crude biosurfactant was extracted from the culture supernatant of Klebsiella sp. Y6-1 by organic solvent (methanol:chloroform:1-butanol) after vacuum freeze drying and the extracted biosurfactant was purified by silica gel column chromatography. When the purified biosurfactant dropped, it formed degrading zone on crude oil plate. When a constituent element of the purified biosurfactant was analyzed by TLC and SDS-PAGE, it was composed of peptides and lipid. The emulsification activity and stability of biosurfactant was measured by using hydrocarbons and crude oil. The emulsification activity and stability of the biosurfactant showed better than the chemically synthesized surfactant. It reduced the surface tension of water from 72 to 32 mN/m at a concentration of 40 mg/l.  相似文献   

18.
Summary Corrosion of mild steel in cultures of a Pseudomonas species under the condition of simultaneous formation of Fe(II) and S2- was initially inhibited by inhibiting the anodic reaction, but after long incubation the corrosion process was allowed to continue. When only S2- was produced, the initial corrosion rate increased for up to 60 h but later declined, probably due to a protective FeS film formed on the metal. Cathodic reactions were affected in a similar fashion as the anode.Extensive pitting corrosion was observed when the mild steel coupons were immersed in bacterial culture producing Fe(IIO) and S2-, but not in the uninoculated control.  相似文献   

19.
Aims: To assess the antimicrobial action of three natural‐derived products (essential oil, decoction and hydrosol of Satureja thymbra) against biofilms, composed of useful, spoilage and pathogenic bacteria (formed as monoculture or/and mixed‐culture), and to compare their efficiency with three standard acid and alkaline chemical disinfectants. Methods and Results: Two acids (hydrochloric and lactic, pH 3), one alkali (sodium hydroxide, pH 11), the essential oil of S. thymbra (1% v/v) and the two by‐products of the essential oil purification procedure (the decoction and the hydrosol fraction of essential oil, 100%), were tested against biofilms formed by five bacterial species, either as monospecies, or as mixed‐culture of all species. The tested bacterial species were Staphylococcus simulans and Lactobacillus fermentum (useful technological bacteria), Pseudomonas putida (spoilage bacterium), Salmonella enterica and Listeria monocytogenes (pathogenic bacteria). Biofilms were left to be formed on stainless steel coupons for 5 days at 16°C, before the application of disinfection treatments, for 60 and 180 min. The disinfection efficiency was evaluated by detaching the remaining viable biofilm cells and enumerating them by agar plating, as well as by automated conductance measurements (using Rapid Automated Bacterial Impedance Technique). Both these methods revealed that the essential oil and the hydrosol of S. thymbra exhibited a strong antimicrobial action against both monospecies and mixed‐culture biofilms. Surprisingly, the efficiency of the other three acid–base disinfectants was not adequate, although a long antimicrobial treatment was applied (180 min). Conclusions: The essential oil of S. thymbra (1%), as well as its hydrosol fraction (100%), presents sufficient bactericidal effect on bacterial biofilms formed on stainless steel. Significance and Impact of the Study: Use of natural antimicrobial agents could provide alternative or supplemented ways for the disinfection of microbial‐contaminated industrial surfaces.  相似文献   

20.
Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号