首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.  相似文献   

2.
We have studied the oligomerization of an alpha-helical coiled-coil using as an example a peptide corresponding to the C-terminal domain of cartilage matrix protein. By replacing one arginine residue, which forms an interchain ionic interaction with a glutamic acid residue, with glutamine, we found that this peptide assembles into a homotetramer at neutral pH in contrast to the native molecule which forms homotrimers. At acidic and basic pH, however, we again observed the trimer conformation. Another arginine, which is probably involved in an intrachain salt bridge, has no effect on the assembly. Our data demonstrate that besides the specific distribution of hydrophobic residues, interchain ionic interactions can be crucial in modulating the association behavior of alpha-helical coiled-coil domains.  相似文献   

3.
We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 A(2) approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 A(2), comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to peptide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.  相似文献   

4.
We determined the 1.17 A resolution X-ray crystal structure of a hybrid peptide based on sequences from coiled-coil regions of the proteins GCN4 and cortexillin I. The peptide forms a parallel homodimeric coiled-coil, with C(alpha) backbone geometry similar to GCN4 (rmsd value 0.71 A). Three stabilizing interactions have been identified: a unique hydrogen bonding-electrostatic network not previously observed in coiled-coils, and two other hydrophobic interactions involving leucine residues at positions e and g from both g-a' and d-e' interchain interactions with the hydrophobic core. This is also the first report of the quantitative significance of these interactions. The GCN4/cortexillin hybrid surprisingly has two interchain Glu-Lys' ion pairs that form a hydrogen bonding network with the Asn residues in the core. This network, which was not observed for the reversed Lys-Glu' pair in GCN4, increases the combined stability contribution of each Glu-Lys' salt bridge across the central Asn15-Asn15' core to approximately 0.7 kcal/mole, compared to approximately 0.4 kcal mole(-1) from a Glu-Lys' salt bridge on its own. In addition to electrostatic and hydrogen bonding stabilization of the coiled-coil, individual leucine residues at positions e and g in the hybrid peptide also contribute to stability by 0.7 kcal/mole relative to alanine. These interactions are of critical importance to understanding the stability requirements for coiled-coil folding and in modulating the stability of de novo designed macromolecules containing this motif.  相似文献   

5.
We have used two-dimensional 1H nuclear magnetic resonance spectroscopy to determine the structure of the synthetic inhibitory peptide N alpha-acetyl TnI(104-115) amide bound to calcium-saturated skeletal troponin C (TnC). Conformational changes in the peptide induced by the formation of the troponin I (TnI) peptide-TnC complex were followed by the study of the transferred nuclear Overhauser effect, a technique that allows one to determine the structure of a ligand bound to a macromolecule. The structure of the bound TnI peptide reveals an amphiphilic alpha-helix, distorted around the two central proline residues. The central bend in the peptide functions to bring the residues on the hydrophobic face into closer proximity with each other, thereby forming a small hydrophobic pocket. The hydrophilic, basic residues extend off the opposite face of the peptide. Hydrophobic surfaces on TnC that become exposed upon binding of calcium are involved in the binding of the TnI peptide, but electrostatic interactions also contribute to the strength of the interaction. The role of amphiphilic helices in the targeting of calcium-binding proteins such as troponin C will be discussed.  相似文献   

6.
Abstract

We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 Å2, approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 ·A2, comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to pep- tide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.  相似文献   

7.
Li G  Li J  Wang W  Yang M  Zhang Y  Sun P  Yuan Z  He B  Yu Y 《Biomacromolecules》2006,7(6):1811-1818
To remove uremic octapeptide from the blood stream of uremic patients, various modified polyacylamide cross-linked absorbents were prepared. Adsorption experiments showed these absorbents have significant differences in adsorption capacity to the target peptide. In this paper, two-dimension proton nuclear magnetic resonance (2D 1H NMR) spectroscopy was used to investigate the interaction mechanism between the peptide and the adsorbents. Because of the insolubility of the absorbent, some soluble linear polymers with the same functional groups as the absorbents were employed as the model adsorbents in 2D 1H NMR. The preferred binding site for the peptide and polymers was identified to be at the C-terminal carboxyl group of the octapeptide via chemical shift perturbation effects. In this study, we found that hydrogen bonding, electrostatic, and hydrophobic interactions all play a role in the interaction force but had different contributions. Especially, the great chemical shift changes of the aromatic amino acid residues (Trp) during the interaction between butyl-modified polyacrylamide and octapeptide suggested the hydrophobic interaction, incorporated with the electrostatic force, played an important role in the binding reaction in aqueous solutions. This information not only rationally explained the results of the adsorption experiments, but also identified the effective binding site and mechanism, and shall provide a structural basis for designing better affinity-type adsorbents for the target peptide.  相似文献   

8.
We present a computational model of the interaction between hydrophobic cations, such as the antimicrobial peptide, Magainin2, and membranes that include anionic lipids. The peptide's amino acids were represented as two interaction sites: one corresponds to the backbone alpha-carbon and the other to the side chain. The membrane was represented as a hydrophobic profile, and its anionic nature was represented by a surface of smeared charges. Thus, the Coulombic interactions between the peptide and the membrane were calculated using the Gouy-Chapman theory that describes the electrostatic potential in the aqueous phase near the membrane. Peptide conformations and locations near the membrane, and changes in the membrane width, were sampled at random, using the Metropolis criterion, taking into account the underlying energetics. Simulations of the interactions of heptalysine and the hydrophobic-cationic peptide, Magainin2, with acidic membranes were used to calibrate the model. The calibrated model reproduced structural data and the membrane-association free energies that were measured also for other basic and hydrophobic-cationic peptides. Interestingly, amphipathic peptides, such as Magainin2, were found to adopt two main membrane-associated states. In the first, the peptide resided mostly outside the polar headgroups region. In the second, which was energetically more favorable, the peptide assumed an amphipathic-helix conformation, where its hydrophobic face was immersed in the hydrocarbon region of the membrane and the charged residues were in contact with the surface of smeared charges. This dual behavior provides a molecular interpretation of the available experimental data.  相似文献   

9.
In an effort to better understand the initial mechanism of selectivity and membrane association of the synthetic antimicrobial peptide NK‐2, we have applied molecular dynamics simulation techniques to elucidate the interaction of the peptide with the membrane interfaces. A homogeneous dipalmitoylphosphatidylglycerol (DPPG) and a homogeneous dipalmitoylphosphatidylethanolamine (DPPE) bilayers were taken as model systems for the cytoplasmic bacterial and human erythrocyte membranes, respectively. The results of our simulations on DPPG and DPPE model membranes in the gel phase show that the binding of the peptide, which is considerably stronger for the negatively charged DPPG lipid bilayer than for the zwitterionic DPPE, is mostly governed by electrostatic interactions between negatively charged residues in the membrane and positively charged residues in the peptide. In addition, a characteristic distribution of positively charged residues along the helix facilitates a peptide orientation parallel to the membrane interface. Once the peptides reside close to the membrane surface of DPPG with the more hydrophobic side chains embedded into the membrane interface, the peptide initially disturbs the respective bilayer integrity by a decrease of the order parameter of lipid acyl chain close to the head group region, and by a slightly decrease in bilayer thickness. We found that the peptide retains a high content of helical structure on the zwitterionic membrane‐water interface, while the loss of α‐helicity is observed within a peptide adsorbed onto negatively charged lipid membranes. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The solution structures of complexes between calcium-saturated calmodulin (Ca (2+)/CaM) and a CaM-binding domain of the HIV-1 matrix protein p17 have been determined by small-angle X-ray scattering with use of synchrotron radiation as an intense and stable X-ray source. We used three synthetic peptides of residues 11-28, 26-47, and 11-47 of p17 to demonstrate the diversity of CaM-binding conformation. Ca (2+)/CaM complexed with residues 11-28 of p17 adopts a dumbbell-like structure at a molar ratio of 1:2, suggesting that the two peptides bind each lobe of CaM, respectively. Ca (2+)/CaM complexed with residues 26-47 of p17 at a molar ratio of 1:1 adopts a globular structure similar to the NMR structure of Ca (2+)/CaM bound to M13, which adopted a compact globular structure. In contrast to these complexes, Ca (2+)/CaM binds directly with both CaM-binding sites of residues 11-47 of p17 at a molar ratio of 1:1, which induces a novel structure different from known structures previously reported between Ca (2+)/CaM and peptide. A tertiary structural model of the novel structure was constructed using the biopolymer module of Insight II 2000 on the basis of the scattering data. The two domains of CaM remain essentially unchanged upon complexation. The hinge motions, however, occur in a highly flexible linker of CaM, in which the electrostatic residues 74Arg, 78Asp, and 82Glu interact with N-terminal electrostatic residues of the peptide (residues 12Glu, 15Arg, and 18Lys). The acidic residues in the N-terminal domain of CaM interact with basic residues in a central part of the peptide, thereby enabling the central part to change the conformations, while an acidic residue in the C-terminal domain interacts with two basic residues in the two helical sites of the peptide. The overall structure of the complex adopts an extended structure with the radius of gyration of 20.5 A and the interdomain distance of 34.2 A. Thus, the complex is principally stabilized by electrostatic interactions. The hydrophobic patches of Ca (2+)/CaM are not responsible for the binding with the hydrophobic residues in the peptide, suggesting that CaM plays a role to sequester the myristic acid moiety of p17.  相似文献   

11.
抗菌肽具有广谱抗菌特性,有望成为抗生素较好的替代产品.研究抗菌肽的抗菌机制,可以为新型抗菌肽的设计提供指导.无论抗菌肽采用哪种抗菌机制,其首先要稳定地吸附到细胞膜之上.因此,本文利用分子动力学模拟方法比较了抗菌小肽BLFcin6与5种不同细胞膜之间的相互作用.对这5种细胞膜而言,小肽会很快结合在POPG膜和DPPC-CHOL膜的表面,倾向于进入DPPC膜的疏水内部,与POPC膜和POPC-CHOL膜的接触很少.考察相互作用能,小肽与POPG膜的相互作用最强,主要是小肽与细胞膜亲水头部存在静电相互作用;小肽与DPPC膜的疏水尾部的相互作用较强,但受胆固醇影响,小肽只结合在DPPC-CHOL膜表面.在结合过程中,小肽N端的Arg会先结合到细胞膜上,静电相互作用在小肽锚定细胞膜的过程中起关键作用.以上研究从原子水平上解释了为什么BLFcin6小肽具有抗菌作用,哪些残基起关键作用,也为进一步开展BLFcin6小肽及其衍生小肽的研究奠定基础.  相似文献   

12.
13.
Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell–cell junction formation, the nectin–afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components. The afadin PDZ domain (AFPDZ) is responsible for binding the cytoplasmic C‐terminus of nectins. AFPDZ is a class II PDZ domain member, which prefers ligands containing a class II PDZ‐binding motif, X‐Φ‐X‐Φ (Φ, hydrophobic residues); both nectins and other physiological AFPDZ targets contain this class II motif. Here, we report the first crystal structure of the AFPDZ in complex with the nectin‐3 C‐terminal peptide containing the class II motif. We engineered the nectin‐3 C‐terminal peptide and AFPDZ to produce an AFPDZ–nectin‐3 fusion protein and succeeded in obtaining crystals of this complex as a dimer. This novel dimer interface was created by forming an antiparallel β sheet between β2 strands. A major structural change compared with the known AFPDZ structures was observed in the α2 helix. We found an approximately 2.5 Å‐wider ligand‐binding groove, which allows the PDZ to accept bulky class II ligands. Apparently, the last three amino acids of the nectin‐3 C‐terminus were sufficient to bind AFPDZ, in which the two hydrophobic residues are important.  相似文献   

14.
A novel antibacterial peptide, moricin, isolated from the silkworm Bombyx mori, consists of 42 amino acids. It is highly basic and the amino acid sequence has no significant similarity to those of other antibacterial peptides. The 20 structures of moricin in methanol have been determined from two-dimensional 1H-nuclear magnetic resonance spectroscopic data. The solution structure reveals an unique structure comprising of a long alpha-helix containing eight turns along nearly the full length of the peptide except for four N-terminal residues and six C-terminal residues. The electrostatic surface map shows that the N-terminal segment of the alpha-helix, residues 5-22, is an amphipathic alpha-helix with a clear separation of hydrophobic and hydrophilic faces, and that the C-terminal segment of the alpha-helix, residues 23-36, is a hydrophobic alpha-helix except for the negatively charged surface at the position of Asp30. The results suggest that the amphipathic N-terminal segment of the alpha-helix is mainly responsible for the increase in permeability of the membrane to kill the bacteria.  相似文献   

15.
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in β cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.  相似文献   

16.
The carboxyl terminus of the type-1 angiotensin II receptor (AT(1A)) is a focal point for receptor activation and deactivation. Synthetic peptides corresponding to the membrane-proximal, first 20 amino acids of the carboxyl terminus adopt an alpha-helical conformation in organic solvents, suggesting that the secondary structure of this region may be sensitive to hydrophobic environments. Using surface plasmon resonance, immobilized lipid chromatography, and circular dichroism, we examined whether this positively charged, amphipathic alpha-helical region of the AT(1A) receptor can interact with lipid components in the cell membrane and thereby modulate local receptor attachment and structure. A synthetic peptide corresponding to the proximal region of the AT(1A) receptor carboxyl terminus (Leu(305) to Lys(325)) was shown by surface plasmon resonance to bind with high affinity to the negatively charged lipid, dimyristoyl L-alpha-phosphatidyl-DL-glycerol (DMPG), but poorly to the zwitterionic lipid, dimyristoyl L-alpha-phosphatidylcholine (DMPC). In contrast, a peptide analogue possessing substitutions at four lysine residues (corresponding to Lys(307,308,310,311)) displayed poor association with either lipid, indicating a crucial anionic component to the interaction. Circular dichroism analysis revealed that both the wild-type and substituted peptides possessed alpha-helical propensity in methanol and trifluoroethanol, while the wild-type peptide also adopted partially inserted helical structure in DMPG and DMPC liposomes. In contrast, the substituted peptide exhibited spectra that suggested the presence of beta-sheet and alpha-helical structure in both liposomes. Immobilized lipid chromatography was used to characterize the hydrophobic component of the membrane interaction, and the results demonstrated that hydrophobic and electrostatic interactions mediated the binding of the wild-type peptide but that the substituted peptide bound to the model membranes mainly via hydrophobic forces. We propose that, in intact AT(1A) receptors, the proximal carboxyl terminus associates with the cytoplasmic face of the cell membrane via a high-affinity, anionic phospholipid-specific tethering that serves to increase the amphipathic helicity of this region. Such associations may be important for receptor function and common for G protein-coupled receptors.  相似文献   

17.
The structure of the glycocalyx of the membrane of human erythrocytes and spectrin-depleted vesicles was studied under various conditions by two spin-labelling approaches: covalently labelling sialic acid residues of the glycocalyx and incorporation of a charged hydrophobic spin probe, CAT 16, being sensitive to alterations on the membrane surface into the lipid phase. Although cell electrophoretic measurements which were performed, additionally, indicated an erection of the glycocalyx upon decreasing the ionic strength of the suspension medium a more restricted mobility of spin-labelled sialic acid residues was found, in this case probably due to electrostatic interactions. The enhanced mobility of the spin probe CAT 16 at low ionic strength as well as in the case of neuraminidase-treated cells could be caused by reduced steric and electrostatic interaction with glycoproteins and glycolipids. La3+ adsorption and virus attachment on the human erythrocyte membrane were accompanied with a reduced mobility of sugar headgroups of the surface coat. No indication of cluster formation or lateral segregation of glycophorin molecules was found upon virus binding. After denaturation of the spectrin cytoskeleton of intact erythrocytes, increased mobility of spin-labelled sialic acid residues was observed.  相似文献   

18.
Eps15 homology (EH) domains are protein interaction modules that recognize Asn-Pro-Phe (NPF) motifs in their biological ligands to mediate critical events during endocytosis and signal transduction. To elucidate the structural basis of the EH-NPF interaction, the solution structures of two EH-NPF complexes were solved using NMR spectroscopy. The first complex contains a peptide representing the Hrb C-terminal NPFL motif; the second contains a peptide in which an Arg residue substitutes the C-terminal Leu. The NPF residues are almost completely embedded in a hydrophobic pocket on the EH domain surface and the backbone of NPFX adopts a conformation reminiscent of the Asx-Pro type I beta-turn motif. The residue directly following NPF is crucial for recognition and is required to complete the beta-turn. Five amino acids on the EH surface mediate specific recognition of this residue through hydrophobic and electrostatic contacts. The complexes explain the selectivity of the second EH domain of Eps15 for NPF over DPF motifs and reveal a critical aromatic interaction that provides a conserved anchor for the recognition of FW, WW, SWG and HTF ligands by other EH domains.  相似文献   

19.
Group II chaperonins, found in eukaryotic and archaeal organisms, recognize substrate proteins through diverse mechanisms that involve either hydrophobic‐ or electrostatic‐dominated interactions. This action is distinct from the universal substrate recognition mechanism of group I chaperonins, which bind a wide spectrum of non‐native proteins primarily through hydrophobic interactions. We use computational approaches to pinpoint the substrate protein binding sites of the γ‐subunit of the eukaryotic chaperonin CCT and to identify its interactions with the stringent substrate β‐tubulin. Protein–protein docking methods reveal intrinsic binding sites of CCT comprising a helical (HL) region, homologous to the GroEL‐binding site, and the helical protrusion (HP) region. We performed molecular dynamics simulations of the solvated CCTγ apical domain, β‐tubulin peptide‐CCTγ complexes, and isolated β‐tubulin peptides. We find that tubulin binds to CCTγ through an extensive interface that spans both the HL region and the HP region. HL interactions involve both hydrophobic and electrostatic contacts, while binding to the HP region is stabilized almost exclusively by a salt bridge network. On the basis of additional simulations of a β‐tubulin‐CCTγ complex that involves a reduced interface, centered onto the HP region, we conclude that this salt bridge network is the minimal stabilizing interaction required. Strong conservation of the charged amino acids that participate in the salt bridge network, Arg306 and Glu271, indicates a general mechanism across the nonidentical CCT subunits and group II chaperonins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The destabilizing effect of electrostatic repulsions on protein stability has been studied by using synthetic two-stranded alpha-helical coiled-coils as a model system. The native coiled-coil consists of two identical 35-residue polypeptide chains with a heptad repeat QgVaGbAcLdQeKf and a Cys residue at position 2 to allow formation of an interchain disulfide bridge. This peptide, designed to contain no intrahelical or interhelical electrostatic interactions, forms a stable coiled-coil structure at 20 degrees C in benign medium (50 mM KCl, 25 mM PO4, pH 7) with a [urea]1/2 value of 6.1 M. Four mutant coiled-coils were designed to contain one or two Glu substitutions for Gln per polypeptide chain. The resulting coiled-coils contained potential i to i' + 5 Glu-Glu interchain repulsions (denoted as peptide E2(15,20)), i to i' + 2 Glu-Glu interchain repulsions (denoted E2(20,22)), or no interchain ionic interactions (denoted E2(13,22) and E1(20)). The stabilities of the coiled-coils were determined by measuring the ellipticities at 222 nm as a function of urea or guanidine hydrochloride concentration at 20 degrees C in the presence and absence of an interchain disulfide bridge. At pH 7, in the presence of urea, the stabilities of E2(13,22) and E2(20,22) were identical suggesting that the potential i to i' + 2 interchain Glu-Glu repulsion in the E2(20,22) coiled-coil does not occur. In contrast, the mutant E2(15,20) is substantially less stable than E2(13,22) or E2(15,20) by 0.9 kcal/mol due to the presence of two i to i' + 5 interchain Glu-Glu repulsions, which destabilize the coiled-coil by 0.45 kcal/mol each. At pH 3 the coiled-coils were found to increase in stability as the number of Glu substitutions were increased. This, combined with reversed-phase HPLC results at pH 7 and pH 2, supports the conclusion that the protonated Glu side chains present at low pH are significantly more hydrophobic than Gln side chains which are in turn more hydrophobic than the ionized Glu side chains present at neutral pH. The protonated Glu residues increase the hydrophobicity of the coiled-coil interface leading to higher coiled-coil stability. The guanidine hydrochloride results at pH 7 show similar stabilities between the native and mutant coiled-coils indicating that guanidine hydrochloride masks electrostatic repulsions due to its ionic nature and that Glu and Gln in the e and g positions of the heptad repeat have very similar effects on coiled-coil stability in the presence of GdnHCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号