首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Q  Shen Y  Liu S  Weng J  Liu J 《FEBS letters》2011,585(8):1175-1179
Human glucokinase (GK) plays an important role in glucose homeostasis. An E339K mutation in GK was recently found to be associated with hyperglycemia. It showed lower enzyme activity and impaired protein stability compared to the wild-type enzyme. Here, we present the crystal structure of E339K GK in complex with glucose. This mutation results in a conformational change of His416, spatially interfering with adenosine-triphosphate (ATP) binding. Furthermore, Ser411 at the ATP binding site is phosphorylated and then hydrogen bonded with Thr82, physically blocking the ATP binding. These findings provide structural basis for the reduced activity of this mutant.  相似文献   

2.
Cooperativity with glucose is a key feature of human glucokinase (GK), allowing its crucial role as a glucose sensor in hepatic and pancreatic cells. We studied the changes in enzyme intrinsic tryptophan fluorescence induced by binding of different ligands to this monomeric enzyme using stopped-flow and equilibrium binding methods. Glucose binding data under pre-steady state conditions suggest that the free enzyme in solution is in a preexisting equilibrium between at least two conformers (super-open and open) which differ in their affinity for glucose (Kd* = 0.17 +/- 0.02 mM and Kd = 73 +/- 18 mM). Increasing the glucose concentration changes the ratio of the two conformers, thus yielding an apparent Kd of 3 mM (different from a Km of 7-10 mM). The rates of conformational transitions of free and GK complexed with sugar are slow and during catalysis are most likely affected by ATP binding, phosphate transfer, and product release steps to allow the kcat to be 60 s-1. The ATP analogue PNP-AMP binds to free GK (super-open) and GK-glucose (open) complexes with comparable affinities (Kd = 0.23 +/- 0.02 and 0.19 +/- 0.08 mM, respectively). However, cooperativity with PNP-AMP observed under equilibrium binding conditions in the presence of glucose (Hill slope of 1.6) is indicative of further complex tightening to the closed conformation. Another physiological modulator (inhibitor), palmitoyl-CoA, binds to GK with similar characteristics, suggesting that conformational changes induced upon ligand binding are not restricted by an active site ligand. In conclusion, our data support control of GK activity and Km through the ratio of distinct conformers (super-open, open, and closed) through either substrate or other ligand binding and/or dissociation.  相似文献   

3.
CK2alpha is the catalytic subunit of protein kinase CK2, an acidophilic and constitutively active eukaryotic Ser/Thr kinase involved in cell proliferation. A crystal structure, at 2.1 A resolution, of recombinant maize CK2alpha (rmCK2alpha) in the presence of ATP and Mg2+, shows the enzyme in an active conformation stabilized by interactions of the N-terminal region with the activation segment and with a cluster of basic residues known as the substrate recognition site. The close interaction between the N-terminal region and the activation segment is unique among known protein kinase structures and probably contributes to the constitutively active nature of CK2. The active centre is occupied by a partially disordered ATP molecule with the adenine base attached to a novel binding site of low specificity. This finding explains the observation that CK2, unlike other protein kinases, can use both ATP and GTP as phosphorylating agents.  相似文献   

4.
The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2α, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2β, noncatalytic subunit of CK2). CK2α belongs to the superfamily of eukaryotic protein kinases (EPKs). To function as regulatory key components, EPKs normally exist in inactive ground states and are activated only upon specific signals. Typically, this activation is accompanied by large conformational changes in helix αC and in the activation segment, leading to a characteristic arrangement of catalytic key elements. For CK2α, however, no strict physiological control of activity is known. Accordingly, CK2α was found so far exclusively in the characteristic conformation of active EPKs, which is, in this case, additionally stabilized by a unique intramolecular contact between the N-terminal segment on one side, and helix αC and the activation segment on the other side. We report here the structure of a C-terminally truncated variant of human CK2α in which the enzyme adopts a decidedly inactive conformation for the first time. In this CK2α structure, those regulatory key regions still are in their active positions. Yet the glycine-rich ATP-binding loop, which is normally part of the canonical anti-parallel β-sheet, has collapsed into the ATP-binding site so that ATP is excluded from binding; specifically, the side chain of Arg47 occupies the ribose region of the ATP site and Tyr50, the space required by the triphospho moiety. We discuss some factors that may support or disfavor this inactive conformation, among them coordination of small molecules at a remote cavity at the CK2α/CK2β interaction region and binding of a CK2β dimer. The latter stabilizes the glycine-rich loop in the extended active conformation known from the majority of CK2α structures. Thus, the novel inactive conformation for the first time provides a structural basis for the stimulatory impact of CK2β on CK2α.  相似文献   

5.
GK (glucokinase) is activated by glucose binding to its substrate site, is inhibited by GKRP (GK regulatory protein) and stimulated by GKAs (GK activator drugs). To explore further the mechanisms of these processes we studied pure recombinant human GK (normal enzyme and a selection of 31 mutants) using steady-state kinetics of the enzyme and TF (tryptophan fluorescence). TF studies of the normal binary GK-glucose complex corroborate recent crystallography studies showing that it exists in a closed conformation greatly different from the open conformation of the ligand-free structure, but indistinguishable from the ternary GK-glucose-GKA complex. GKAs did activate and GKRP did inhibit normal GK, whereas its TF was doubled by glucose saturation. However, the enzyme kinetics, GKRP inhibition, TF enhancement by glucose and responsiveness to GKA of the selected mutants varied greatly. Two predominant response patterns were identified accounting for nearly all mutants: (i) GK mutants with a normal or close to normal response to GKA, normally low basal TF (indicating an open conformation), some variability of kinetic parameters (k(cat), glucose S(0.5), h and ATP K(m)), but usually strong GKRP inhibition (13/31); and (ii) GK mutants that are refractory to GKAs, exhibit relatively high basal TF (indicating structural compaction and partial closure), usually show strongly enhanced catalytic activity primarily due to lowering of the glucose S(0.5), but with reduced or no GKRP inhibition in most cases (14/31). These results and those of previous studies are best explained by envisioning a common allosteric regulator region with spatially non-overlapping GKRP- and GKA-binding sites.  相似文献   

6.
The flaviviral nonstructural 3 protease (NS3pro) is essential for virus replication and is therefore a pharmaceutically relevant target to fight Dengue and West Nile virus (WNV). NS3pro is a chymotrypsin‐like serine protease which requires a polypeptide cofactor (NS2B) for activation. Recent X‐ray crystallography studies have led to the suggestion that the substrate binds to the two‐component NS2B‐NS3pro enzyme by an induced‐fit mechanism. Here, multiple explicit water molecular dynamics simulations of the WNV NS2B‐NS3pro enzyme show that the active conformation of the NS2B cofactor (in which its β‐loop is part of the substrate binding site) is stable over a 50‐ns time scale even in the absence of the inhibitor. The partial and reversible opening of the NSB2 β‐loop and its correlated motion with an adjacent NS3pro loop, both observed in the simulations started from the active conformation, are likely to facilitate substrate binding and product release. Moreover, in five of eight simulations without inhibitor (started from two X‐ray structures both with improperly formed oxyanion hole) the Thr132‐Gly133 peptide bond flips spontaneously thereby promoting the formation of the catalytically competent oxyanion hole, which then stays stable until the end of the runs. The simulation results provide evidence at atomic level of detail that the substrate binds to the NS2B‐NS3pro enzyme by conformational selection, rather than induced‐fit mechanism.  相似文献   

7.
Glucokinase (GK) has several known polymorphic activating mutations that increase the enzyme activity by enhancing glucose binding affinity and/or by alleviating the inhibition of glucokinase regulatory protein (GKRP), a key regulator of GK activity in the liver. Kinetic studies were undertaken to better understand the effect of these mutations on the enzyme mechanism of GK activation and GKRP regulation and to relate the enzyme properties to the associated clinical phenotype of hypoglycemia. Similar to wild type GK, the transient kinetics of glucose binding for activating mutations follows a general two-step mechanism, the formation of an enzyme-glucose complex followed by an enzyme conformational change. However, the kinetics for each step differed from wild type GK and could be grouped into specific types of kinetic changes. Mutations T65I, Y214C, and A456V accelerate glucose binding to the apoenzyme form, whereas W99R, Y214C, and V455M facilitate enzyme isomerization to the active form. Mutations that significantly enhance the glucose binding to the apoenzyme also disrupt the protein-protein interaction with GKRP to a large extent, suggesting these mutations may adopt a more compact conformation in the apoenzyme favorable for glucose binding. Y214C is the most active mutation (11-fold increase in k(cat)/K(0.5)(h)) and exhibits the most severe clinical effects of hypoglycemia. In contrast, moderate activating mutation A456V nearly abolishes the GKRP inhibition (76-fold increase in K(i)) but causes only mild hypoglycemia. This suggests that the alteration in GK enzyme activity may have a more profound biological impact than the alleviation of GKRP inhibition.  相似文献   

8.
Glucose modulation of glucokinase activation by small molecules   总被引:1,自引:0,他引:1  
Ralph EC  Thomson J  Almaden J  Sun S 《Biochemistry》2008,47(17):5028-5036
Small molecule activators of glucokinase (GK) were used in kinetic and equilibrium binding studies to probe the biochemical basis for their allosteric effects. These small molecules decreased the glucose K 0.5 ( approximately 1 mM vs approximately 8 mM) and the glucose cooperativity (Hill coefficient of 1.2 vs 1.7) and lowered the k cat to various degrees (62-95% of the control activity). These activators relieved GK's inhibition from glucokinase regulatory protein (GKRP) in a glucose-dependent manner and activated GK to the same extent as control reactions in the absence of GKRP. In equilibrium binding studies, the intrinsic glucose affinity to the activator-bound enzyme was determined and demonstrated a 700-fold increase relative to the apoenzyme. This is consistent with a reduction in apparent glucose K D and the steady-state parameter K 0.5 as a result of enzyme equilibrium shifting to the activator-bound form. The binding of small molecules to GK was dependent on glucose, consistent with the structural evidence for an allosteric binding site which is present in the glucose-induced, active enzyme form of GK and absent in the inactive apoenzyme [Kamata et al. (2004) Structure 12, 429-438]. A mechanistic model that brings together the kinetic and structural data is proposed which allows qualitative and quantitative analysis of the glucose-dependent GK regulation by small molecules. The regulation of GK activation by glucose may have an important implication for the discovery and design of GK activators as potential antidiabetic agents.  相似文献   

9.
The structures of fully active cyclin-dependent kinase-2 (CDK2) complexed with ATP and peptide substrate, CDK2 after the catalytic reaction, and CDK2 inhibited by phosphorylation at Thr14/Tyr15 were studied using molecular dynamics (MD) simulations. The structural details of the CDK2 catalytic site and CDK2 substrate binding box were described. Comparison of MD simulations of inhibited complexes of CDK2 was used to help understand the role of inhibitory phosphorylation at Thr14/Tyr15. Phosphorylation at Thr14/Tyr15 causes ATP misalignment for the phosphate-group transfer, changes in the Mg2+ coordination sphere, and changes in the H-bond network formed by CDK2 catalytic residues (Asp127, Lys129, Asn132). The inhibitory phosphorylation causes the G-loop to shift from the ATP binding site, which leads to opening of the CDK2 substrate binding box, thus probably weakening substrate binding. All these effects explain the decrease in kinase activity observed after inhibitory phosphorylation at Thr14/Tyr15 in the G-loop. Interaction of the peptide substrate, and the phosphorylated peptide product, with CDK2 was also studied and compared. These results broaden hypotheses drawn from our previous MD studies as to why a basic residue (Arg/Lys) is preferred at the P+2 substrate position. Figure View of the substrate binding site of the fully active cyclin-dependent kinase-2 (CDK2) (pT160-CDK2/cyclin A/ATP). The pThr160 activation site is located in the T-loop (yellow secondary structure). The G-loop, which partly forms the ATP binding site, is shown in blue. The Thr14 and Tyr15 inhibitory phosphorylation sites located in the G-loop are shown in licorice representation  相似文献   

10.
Expression of heterologous SERCA1a ATPase in Cos-1 cells was optimized to yield levels that account for 10-15% of the microsomal protein, as revealed by protein staining on electrophoretic gels. This high level of expression significantly improved our characterization of mutants, including direct measurements of Ca(2+) binding by the ATPase in the absence of ATP, and measurements of various enzyme functions in the presence of ATP or P(i). Mutational analysis distinguished two groups of amino acids within the transmembrane domain: The first group includes Glu771 (M5), Thr799 (M6), Asp800 (M6), and Glu908 (M8), whose individual mutations totally inhibit binding of the two Ca(2+) required for activation of one ATPase molecule. The second group includes Glu309 (M4) and Asn796 (M6), whose individual or combined mutations inhibit binding of only one and the same Ca(2+). The effects of mutations of these amino acids were interpreted in the light of recent information on the ATPase high-resolution structure, explaining the mechanism of Ca(2+) binding and catalytic activation in terms of two cooperative sites. The Glu771, Thr799, and Asp800 side chains contribute prominently to site 1, together with less prominent contributions by Asn768 and Glu908. The Glu309, Asn796, and Asp800 side chains, as well as the Ala305 (and possibly Val304 and Ile307) carbonyl oxygen, contribute to site 2. Sequential binding begins with Ca(2+) occupancy of site 1, followed by transition to a conformation (E') sensitive to Ca(2+) inhibition of enzyme phosphorylation by P(i), but still unable to utilize ATP. The E' conformation accepts the second Ca(2+) on site 2, producing then a conformation (E' ') which is able to utilize ATP. Mutations of residues (Asp813 and Asp818) in the M6/M7 loop reduce Ca(2+) affinity and catalytic turnover, suggesting a strong influence of this loop on the correct positioning of the M6 helix. Mutation of Asp351 (at the catalytic site within the cytosolic domain) produces total inhibition of ATP utilization and enzyme phosphorylation by P(i), without a significant effect on Ca(2+) binding.  相似文献   

11.
Xu X  Wang X  Xiao Z  Li Y  Wang Y 《PloS one》2011,6(2):e16757
Aurora A is an important oncogenic kinase for mitotic spindle assembly and a potentially attractive target for human cancers. Its activation could be regulated by ATP cycle and its activator TPX2. To understand the activation mechanism of Aurora A, a series of 20 ns molecular dynamics (MD) simulations were performed on both the wild-type kinase and its mutants. Analyzing the three dynamic trajectories (Aurora A-ATP, Aurora A-ADP, and Aurora A-ADP-TPX2) at the residue level, for the first time we find two TPX2-dependent switches, i.e., switch-1 (Lys-143) and switch-2 (Arg-180), which are tightly associated with Aurora A activation. In the absence of TPX2, Lys-143 exhibits a "closed" state, and becomes hydrogen-bonded to ADP. Once TPX2 binding occurs, switch-1 is forced to "open" the binding site, thus pulling ADP away from Aurora A. Without facilitation of TPX2, switch-2 exits in an "open" conformation which accompanies the outward-flipping movement of P·Thr288 (in an inactive conformation), leading to the crucial phosphothreonine exposed and accessible for deactivation. However, with the binding of TPX2, switch-2 is forced to undergo a "closed" movement, thus capturing P·Thr288 into a buried position and locking its active conformation. Analysis of two Aurora A (K143A and R180A) mutants for the two switches further verifies their functionality and reliability in controlling Aurora activity. Our systems therefore suggest two switches determining Aurora A activation, which are important for the development of aurora kinase inhibitors.  相似文献   

12.
Human glucokinase (GK) is a principal regulating sensor of plasma glucose levels. Mutations that inactivate GK are linked to diabetes, and mutations that activate it are associated with hypoglycemia. Unique kinetic properties equip GK for its regulatory role: although it has weak basal affinity for glucose, positive cooperativity in its binding of glucose causes a rapid increase in catalytic activity when plasma glucose concentrations rise above euglycemic levels. In clinical trials, small molecule GK activators (GKAs) have been efficacious in lowering plasma glucose and enhancing glucose-stimulated insulin secretion, but they carry a risk of overly activating GK and causing hypoglycemia. The theoretical models proposed to date attribute the positive cooperativity of GK to the existence of distinct protein conformations that interconvert slowly and exhibit different affinities for glucose. Here we report the respective crystal structures of the catalytic complex of GK and of a GK-glucose complex in a wide open conformation. To assess conformations of GK in solution, we also carried out small angle x-ray scattering experiments. The results showed that glucose dose-dependently converts GK from an apo conformation to an active open conformation. Compared with wild type GK, activating mutants required notably lower concentrations of glucose to be converted to the active open conformation. GKAs decreased the level of glucose required for GK activation, and different compounds demonstrated distinct activation profiles. These results lead us to propose a modified mnemonic model to explain cooperativity in GK. Our findings may offer new approaches for designing GKAs with reduced hypoglycemic risk.  相似文献   

13.
Interfacial activation of Rhizomucor miehei lipase is accompanied by a hinge-type motion of a single helix (residues 83-94) that acts as a lid over the active site. Activation of the enzyme involves the displacement of the lid to expose the active site, suggesting that the dynamics of the lid could be of mechanistic and kinetic importance. To investigate possible activation pathways and to elucidate the effect of a hydrophobic environment (as would be provided by a lipid membrane) on the lid opening, we have applied molecular dynamics and Brownian dynamics techniques. Our results indicate that the lipase activation is enhanced in a hydrophobic environment. In nonpolar low-dielectric surroundings, the lid opens in approximately 100 ns in the BD simulations. In polar high-dielectric (aqueous) surroundings, the lid does not always open up in simulations of up to 900 ns duration, but it does exhibit some gating motion, suggesting that the enzyme molecule may exist in a partially active form before the catalytic reaction. The activation is controlled by the charged residues ARG86 and ASP91. In the inactive conformation, ASP91 experiences repulsive forces and pushes the lid toward the open conformation. Upon activation ARG86 approaches ASP61, and in the active conformation, these residues form a salt bridge that stabilizes the open conformation.  相似文献   

14.
Many protein kinases are characterized by at least two structural forms corresponding to the highest level of activity (active) and low or no activity, (inactive). Further, protein dynamics is an important consideration in understanding the molecular and mechanistic basis of enzyme function. In this work, we use protein kinase A (PKA) as the model system and perform microsecond range molecular dynamics (MD) simulations on six variants which differ from one another in terms of active and inactive form, with or without bound ligands, C‐terminal tail and phosphorylation at the activation loop. We find that the root mean square fluctuations in the MD simulations are generally higher for the inactive forms than the active forms. This difference is statistically significant. The higher dynamics of inactive states has significant contributions from ATP binding loop, catalytic loop, and αG helix. Simulations with and without C‐terminal tail show this differential dynamics as well, with lower dynamics both in the active and inactive forms if C‐terminal tail is present. Similarly, the dynamics associated with the inactive form is higher irrespective of the phosphorylation status of Thr 197. A relatively stable stature of active kinases may be better suited for binding of substrates and detachment of the product. Also, phosphoryl group transfer from ATP to the phosphosite on the substrate requires precise transient coordination of chemical entities from three different molecules, which may be facilitated by the higher stability of the active state.  相似文献   

15.
The activation of most protein kinases requires phosphorylation at a conserved site within a structurally defined segment termed the activation loop. A classic example is the regulation of the cell cycle control enzyme, CDK2/cyclin A, in which catalytic activation depends on phosphorylation at Thr(160) in CDK2. The structural consequences of phosphorylation have been revealed by x-ray crystallographic studies on CDK2/cyclin A and include changes in conformation, mainly of the activation loop. Here, we describe the kinetic basis for activation by phosphorylation in CDK2/cyclin A. Phosphorylation results in a 100,000-fold increase in catalytic efficiency and an approximate 1,000-fold increase in the overall turnover rate. The effects of phosphorylation on the individual steps in the catalytic reaction pathway were determined using solvent viscosometric techniques. It was found that the increase in catalytic power arises mainly from a 3,000-fold increase in the rate of the phosphoryl group transfer step with a more moderate increase in substrate binding affinity. In contrast, the rate of phosphoryl group transfer in the ATPase pathway was unaffected by phosphorylation, demonstrating that phosphorylation at Thr(160) does not serve to stabilize ATP in the ATPase reaction. Thus, we hypothesize that the role of phosphorylation in the kinase reaction may be to specifically stabilize the peptide phosphoacceptor group.  相似文献   

16.
Based upon the crystal structures of PcrA helicase, we have made and characterised mutations in a number of conserved helicase signature motifs around the ATPase active site. We have also determined structures of complexes of wild-type PcrA with ADPNP and of a mutant PcrA complexed with ADPNP and Mn2+. The kinetic and structural data define roles for a number of different residues in and around the ATP binding site. More importantly, our results also show that there are two functionally distinct conformations of ATP in the active site. In one conformation, ATP is hydrolysed poorly whereas in the other (activated) conformation, ATP is hydrolysed much more rapidly. We propose a mechanism to explain how the stimulation of ATPase activity afforded by binding of single-stranded DNA stabilises the activated conformation favouring Mg2+binding and a consequent repositioning of the gamma-phosphate group which promotes ATP hydrolysis. A part of the associated conformational change in the protein forces the side-chain of K37 to vacate the Mg2+binding site, allowing the cation to bind and interact with ATP.  相似文献   

17.
Abstract

Glucokinase (GK) plays a key role in the regulation of hepatic glucose metabolism. An unusual mechanism of positive cooperativity of monomeric GK containing only a single binding site for glucose is very interesting and still unclear. The activation process of GK is associated with a large-scale conformational change from the inactive to the active state. Here, conventional and targeted molecular dynamics simulations were used to study the conformational dynamics of GK in the stable configurations and in the transition from active to inactive state. Three phases of the structural reorganization of GK were detected. The first step is a transformation of GK from the active state to the intermediate structure, where the cleft between the domains is open, but alpha helix 13 is still inside the small domain. From this point, there are two alternative paths. One path leads to the inactive state through the release of helix 13 from the inside of small domain to the outside. Other path goes back to the active state. Simulation results reveal the critical role of helix 13 in the transformation of GK from the open state to inactive one and the influence of the loop 2 on the protein transformation between the open and the closed active states. Principal component analysis and covariance matrix analysis were carried out to analyze the dynamics of protein. Importance of hydrogen bonds in the stability of the closed conformation is shown. Overall, our simulations provide new information about the dynamics of GK and its structural transformation.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
Glucokinase (GK), a glucose sensor, maintains plasma glucose homeostasis via phosphorylation of glucose and is a potential therapeutic target for treating maturity-onset diabetes of the young (MODY) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To characterize the catalytic mechanism of glucose phosphorylation by GK, we combined molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations, experimental mutagenesis and enzymatic kinetic analysis on both wild-type and mutated GK. Our three-dimensional (3D) model of the GK-Mg2+-ATP-glucose (GMAG) complex, is in agreement with a large number of mutagenesis data, and elucidates atomic information of the catalytic site in GK for glucose phosphorylation. A 10-ns MD simulation of the GMAG complex revealed that Lys169 plays a dominant role in glucose phosphorylation. This prediction was verified by experimental mutagenesis of GK (K169A) and enzymatic kinetic analyses of glucose phosphorylation. QM/MM calculations were further used to study the role of Lys169 in the catalytic mechanism of the glucose phosphorylation and we found that Lys169 enhances the binding of GK with both ATP and glucose by serving as a bridge between ATP and glucose. More importantly, Lys169 directly participates in the glucose phosphorylation as a general acid catalyst. Our findings provide mechanistic details of glucose phorphorylation catalyzed by GK, and are important for understanding the pathogenic mechanism of MODY.  相似文献   

19.
Activation of CaMKII by calmodulin and the subsequent maintenance of constitutive activity through autophosphorylation at threonine residue 286 (Thr286) are thought to play a major role in synaptic plasticity. One of the effects of autophosphorylation at Thr286 is to increase the apparent affinity of CaMKII for calmodulin, a phenomenon known as "calmodulin trapping". It has previously been suggested that two binding sites for calmodulin exist on CaMKII, with high and low affinities, respectively. We built structural models of calmodulin bound to both of these sites. Molecular dynamics simulation showed that while binding of calmodulin to the supposed low-affinity binding site on CaMKII is compatible with closing (and hence, inactivation) of the kinase, and could even favour it, binding to the high-affinity site is not. Stochastic simulations of a biochemical model showed that the existence of two such binding sites, one of them accessible only in the active, open conformation, would be sufficient to explain calmodulin trapping by CaMKII. We can explain the effect of CaMKII autophosphorylation at Thr286 on calmodulin trapping: It stabilises the active state and therefore makes the high-affinity binding site accessible. Crucially, a model with only one binding site where calmodulin binding and CaMKII inactivation are strictly mutually exclusive cannot reproduce calmodulin trapping. One of the predictions of our study is that calmodulin binding in itself is not sufficient for CaMKII activation, although high-affinity binding of calmodulin is.  相似文献   

20.
Human calcium/calmodulin-dependent protein kinase I (CaMKI) plays pivotal roles in the nervous system. The activity of human CaMKI is regulated by a regulatory region including an autoinhibitory segment and a CaM-binding segment. We report here four structures of three CaMKIα truncates in apo form and in complexes with ATP. In an apo, autoinhibited structure, the activation segment adopts a unique helical conformation which together with the autoinhibitory segment constrains helices αC and αD in inactive conformations, sequesters Thr177 from being phosphorylated, and occludes the substrate-binding site. In an ATP-bound, inactive structure, the activation segment is largely disordered and the CaM-binding segment protrudes out ready for CaM binding. In an ATP-bound, active structure, the regulatory region is dissociated from the catalytic core and the catalytic site assumes an active conformation. Detailed structural analyses reveal the interplay of the regulatory region, the activation segment, and the nucleotide-binding site in the regulation of CaMKI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号