首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Molecular cloning of human genes for serum amyloid A   总被引:3,自引:0,他引:3  
G H Sack 《Gene》1983,21(1-2):19-24
Three human DNA fragments hybridizing to a mouse cDNA plasmid for the acute phase protein amyloid A have been isolated from the human lambda Charon 4A phage library. Two of these recombinants, GSAA1 (12.8 kb insert) and GSAA2 (15.9 kb insert), share an apparently identical internal region of 9.7 kb while the third, GSAA3 (15.95-kb insert) shows different restriction enzyme fragments. Hybridization studies localize the coding region to single HindIII fragments and suggest that all coding information is present in these recombinants; these fragments have been subcloned into pBR322 and mapped for further study.  相似文献   

3.
S100A11 is a dimeric EF-hand calcium-binding protein. Calcium binding to S100A11 results in a large conformational change that uncovers a broad hydrophobic surface used to interact with phospholipid-binding proteins (annexins A1 and A2) and facilitate membrane vesiculation events. In contrast with other S100 proteins, S100A10 is unable to bind calcium due to deletion and substitution of calcium-ligating residues. Despite this, calcium-free S100A10 assumes an 'open' conformation that is very similar to S100A11 in its calcium-bound state. To understand how S100A10 is able to adopt an open conformation in the absence of calcium, seven chimaeric proteins were constructed where regions from calcium-binding sites I and II, and helices II-IV in S100A11 were replaced with the corresponding regions of S100A10. The chimaeric proteins having substitutions in calcium-binding site II displayed increased hydrophobic surface exposure as assessed by bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'disulfonic acid, dipotassium salt) fluorescence and phenyl-Sepharose binding in the absence of calcium. This response is similar to that observed for Ca2+-S100A11 and calcium-free S100A10. Further, this substitution resulted in calcium-insensitive binding to annexin A2 for one chimaeric protein. The results indicate that residues within site II are important in stabilizing the open conformation of S100A10 and presentation of its target binding site. In contrast, S100A11 chimaeric proteins with helical substitutions displayed poorer hydrophobic surface exposure and, consequently, unobservable annexin A2 binding. The present study represents a first attempt to systematically understand the molecular basis for the calcium-insensitive open conformation of S100A10.  相似文献   

4.
M M Kay 《FASEB journal》1991,5(1):109-115
Band 3 is a ubiquitous membrane transport protein found in Golgi, mitochondrial, nuclear, and cell membranes. It is the most heavily used anion transport system in the body because it is responsible for CO2 exchange in all tissues and organs and for acid-base balance. The anion transport regions are mapped along the band 3 molecule using synthetic peptides (pep) from extracellular regions of band 3 and/or suspected anion transport regions. Assays include anion transport/inhibition and immunoblotting with anti-idiotypic antibodies to a transport inhibitor. Results indicate that anion binding/transport regions of band 3 reside within residues 549-594, (588-594 being the most active) and 804-839 (822-839 being the most active), and 869-883. Pep-COOH (residues 812-827), which is part of senescent cell antigen, is an anion binding site with most of the activity localized to residues 813-818 (the six amino acids on the amino side of pep-COOH). The stilbene disulfonate inhibitors of transport bind to peptide 812-830, and possibly peptides 788-805 and 800-818, as determined with anti-idiotypic antibodies. Residues 538-554, which have been reported to be a transport segment of band 3, do not bind sulfate. Band 3 external loops containing residues 539-553 and 812-830, and internal segments containing residues 588-594 and 869-883, are in close spacial proximity in the membrane. The contribution of lysine and/or arginine to anion transport is examined by synthesizing peptides in which glycines or arginines are substituted for lysines or arginines. Lysines can contribute to anion binding but are not required.  相似文献   

5.
Native human islet amyloid polypeptide (hIAPP) has been identified as the major component of amyloid plaques found in the pancreatic islets of Langerhans of persons affected by type 2 diabetes mellitus. Early studies of hIAPP determined that a segment of the molecule, amino acids 20-29, is responsible for its aggregation into amyloid fibrils. The present study demonstrates that the aggregation of hIAPP 20-29-Trp is a nucleation-dependent process, displaying a distinct lag time before the onset of rapid aggregation. Moreover, the lag time can be eliminated by seeding the sample of unaggregated peptide with preformed fibrils. In contrast to the expectation from the conventional model of nucleation-dependent aggregation, however, the lag time of hIAPP aggregation does not depend on peptide concentration. To explain this observation, a modified version of the standard model of nucleation-dependent aggregation is presented in which the monomeric peptide concentration is buffered by an off-aggregation-pathway formation of peptide micelles.  相似文献   

6.
Saiki M  Hidaka Y  Nara M  Morii H 《Biochemistry》2012,51(8):1566-1576
Prion diseases represent fatal neurodegenerative disorders caused by the aggregation of prion proteins. With regard to the formation of the amyloidogenic cross-β-structure, the initial mechanism in the conversion to a β-structure is critically important. To explore the core regions forming a stem of the amyloid, we designed and prepared a series of peptides comprised of two native sequences linked by a turn-inducing dipeptide moiety and examined their ability to produce amyloids. A sequence alignment of the peptides bearing the ability to form amyloid structures revealed that paired strands consisting of VNITI (residues 180-184) and VTTTT (residues 189-193) are the core regions responsible for initiating the formation of cross-β-structures and for further ordered aggregation. In addition, most of the causative mutations responsible for inherited prion diseases were found to be located in these stem-forming regions on helix H2 and their counterpart on helix H3. Moreover, the volume effect of the nonstem domain, which contains ~200 residues, was deduced to be a determinant of the nature of the association such as oligomerization, because the stem-forming domain is only a small part of a prion protein. Taken together, we conclude that the mechanism underlying the initial stage of amyloidogenesis is the exposure of a newly formed intramolecular β-sheet to a solvent through the partial transition of a native structure from an α-helix to a β-structure. Our results also demonstrate that prion diseases caused by major prion proteins except the prions of some fungi such as yeast are inherent only in mammals, as evidenced by a comparison of the corresponding sequences to the stem-forming regions among different animals.  相似文献   

7.
We present a combined experimental and theoretical investigation of the tendencies to form amyloid fibrils by a hexapeptide derivative of the human islet amyloid polypeptide, the NFGAIL (22-27) fragment and its mutants. We performed a complete alanine scan of this fragment and studied the capability of the wild-type and its mutant analogs to form ordered fibrils by ultrastructural and biophysical analyses. In parallel, we conducted a meticulous characterization of each sequence-complex at an atomistic level by performing nine independent molecular dynamics simulations for a total of 36 ns. These allowed us to rationalize the experimental observations and to establish the role of every residue in the fibrillogenesis. The main factor that determines the formation of regular fibrils is a coherent organization of the intersheet space. In particular, phenylalanine side chains cement the macromolecular assemblies due to their aromatic chemical character and restricted conformational flexibility when interacting with aliphatic residues.  相似文献   

8.
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid plaques found in the pancreatic islets of persons with type 2 diabetes mellitus. HIAPP belongs to the group of amyloidogenic proteins, characterized by their aggregation and deposition as fibrillar amyloid in various body tissues. The aggregation of amyloidogenic proteins is thought to occur via a common pathway, but currently no unifying kinetic model exists. In previous work, we presented a model of amyloid fibril formation formulated from our observations of the aggregation of an amyloidogenic fragment of hIAPP, amino acids 20-29. Our model is based on nucleation-dependent aggregation, modified by the formation of off-pathway hIAPP micelles. In the present study we confirm the presence of peptide micelles, and experimentally determine the critical micelle concentration in solutions of hIAPP fragments using three different techniques: conductivity, pH, and fluorescence. All three techniques yield a critical micelle concentration of 3-3.5 micro M peptide. Furthermore, based on changes in the fluorescence intensity of a labeled peptide fragment as well as a decrease in solution pH as a result of deprotonation of the amino terminus, we conclude that the amino terminus of the fragment undergoes a significant change of environment upon micellization.  相似文献   

9.
The structure of a human serum amyloid A (SAA) genomic clone (SAAg9) has been analyzed and the nucleotide sequence of the coding regions is compared with that of the cDNA for apoSAA1. The leader and coding sequences of exons 2 and 3 are identical to SAA1. However, there are 10 nucleotide and 7 derived amino acid substitutions in exon 4. These changes are identical to the amino acid sequence of the amyloid protein associated with familial Mediterranean fever. In particular, the amino acid substitution (Thr to Phe) at residue 69 of SAA1 may have an important role in this type of hereditary amyloidosis. The genomic clone SAAg9 has been transfected into mouse L cells, and constitutive expression of human specific mRNA and protein were observed in stable transfected clones. The expression of both SAA mRNA and protein were increased by incubation of the transfected cells with purified human interleukin-1 (IL-1), both human and mouse recombinant IL-1, and recombinant human tumor necrosis factor alpha. The induction of SAA is pretranslational and is likely to be mediated by protein factor(s) since incubation with cycloheximide diminished IL-1-dependent increase in SAA mRNA.  相似文献   

10.
The non-beta-amyloid (Abeta) component of Alzheimer's disease amyloid (NAC) and its precursor alpha-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and alpha-synuclein both form beta-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3-18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8-18) and NAC(8-16) are toxic, whereas NAC(12-18), NAC(9-16) and NAC(8-15) are not. Circular dichroism indicates that none of the peptides displays beta-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce beta sheet, fragments NAC(8-18) and NAC(8-16) both form beta-sheet structure. Only NAC(8-18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8-16 of NAC, equivalent to residues 68-76 in alpha-synuclein, comprise the region crucial for toxicity.  相似文献   

11.
DNA sequence evidence for polymorphic forms of human serum amyloid A (SAA)   总被引:8,自引:0,他引:8  
Serum amyloid A (SAA) is an acute-phase reactant and precursor to amyloid A protein, the major constituent of the fibril deposits of reactive amyloidosis. The factors determining whether the 104-amino acid SAA molecule is converted into the 76-amino acid amyloid A protein and deposited as fibrils are not known. As an initial step toward investigating the possibility that a particular primary structure of SAA is involved in amyloid formation, we have cloned and determined the nucleotide sequence of human SAA-specific cDNAs. The first clone, selected using an oligonucleotide probe, was shown to encode the signal peptide and amino-terminal region of SAA. The cDNA of this clone served as probe in the selection of two distinct, full-length SAA cDNAs, initially differentiated by the presence (pSAA21) or absence (pSAA82) of a PstI site in the coding sequence. The complete nucleotide sequence of pSAA82 cDNA was determined. Since there appear to be multiple human SAA alleles, it is conceivable that their differential expression is important to amyloid formation.  相似文献   

12.
The antiadhesive effect of dog blood serum described previously was shown to be associated with the proteolytic activity of the serum components. The protease exhibiting this antiadhesive effect was isolated by several fractionation stages and identified with plasmin.  相似文献   

13.
Wang YP  Wang ZF  Zhang YC  Tian Q  Wang JZ 《Cell research》2004,14(6):467-472
Abnormal deposition of amyloid-β(Aβ) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer‘s disease (AD) brain. By using amyloid precursor protein (APP) transfected cells, this study aims to investigate the effect of overproduction of Aβ on cell differentiation and cell viability. It was shown that after serum withdrawal, untransfected cell (N2a/Wt) and vector transfected cells (N2a/vector) extended long and branched cell processes, whereas no neurites was induced in wild type APP (N2a/APP695) and Swedish mutant APP (N2a/APPswe) transfected N2a cells. After differentiation by serum withdrawal, the localization of APP/Aβ and neurofilament was extended to neurites, whereas those of APP-transfected cells were still restricted within the cell body. Levels of both APP and Aβ were significantly higher in N2a/APP695 and N2a/APPswe than in N2a/Wt, as determined by Western blot and Sandwich ELISA, respectively. To further investigate the effect of Aβ on the inhibition of cell differentiation,we added exogenously the similar level or about 10-times of the Aβ level produced by N2a/APP695 and N2a/APPswe to the culture medium and co-cultured with N2a/Wt for 12 h, and we found that the inhibition of serum withdrawalinduced differentiation observed in N2a/APP695 and N2a/APPswe could not be reproduced by exogenous administration of Aβ into N2a/Wt. We also observed that neither endogenous production nor exogenous addition of Aβ1-40 or Aβ1-42, even to hundreds fold of the physiological concentration, affected obviously the cell viability. These results suggest that the overproduction of Aβ could not arrest cell differentiation induced by serum deprivation and that, at least to a certain degree and in a limited time period, is not toxic to cell viability.  相似文献   

14.
The antiadhesive effect of dog blood serum described previously was shown to be associated with the proteolytic activity of the serum components. A protease exhibiting this antiadhesive effect was isolated by several fractionation stages and identified with plasmin.  相似文献   

15.
16.
17.
Proteolytic cleavage of the amyloid precursor protein (APP) by beta and gamma-secretases gives rise to the beta-amyloid peptide, considered to be a causal factor in Alzheimer's disease. Conversely, the soluble extracellular domain of APP (sAPPalpha), released upon its cleavage by alpha-secretase, plays a number of important physiological functions. Several APP fragments have been structurally characterized at atomic resolution, but the structures of intact APP and of full-length sAPPalpha have not been determined. Here, ab initio reconstruction of molecular models from high-resolution solution X-ray scattering (SAXS) data for the two main isoforms of sAPPalpha (sAPPalpha(695) and sAPPalpha(770)) provided models of sufficiently high resolution to identify distinct structural domains of APP. The fragments for which structures are known at atomic resolution were fitted within the solution models of full-length sAPPalpha, allowing localization of important functional sites (i.e. glycosylation, protease inhibitory and heparin-binding sites). Furthermore, combined results from SAXS, analytical ultracentrifugation (AUC) and size-exclusion chromatography (SEC) analysis indicate that both sAPPalpha isoforms are monomeric in solution. On the other hand, SEC, bis-ANS fluorescence, AUC and SAXS measurements showed that sAPPalpha forms a 2:1 complex with heparin. A conformational model for the sAPPalpha:heparin complex was also derived from the SAXS data. Possible implications of such complex formation for the physiological dimerization of APP and biological signaling are discussed in terms of the structural models proposed.  相似文献   

18.
A frameshift mutation that causes a silent phenotype for human serum cholinesterase was identified in the DNA of seven individuals of two unrelated families. The mutation, identified using the polymerase chain reaction, causes a shift in the reading frame from Gly 117, where GGT (Gly)----GGAG (Gly+ 1 base) to a new stop codon created at position 129. This alteration is upstream of the active site (Ser 198), and, if any protein were made, it would represent only 22% of the mature enzyme found in normal serum. Results of analysis of the enzymatic activities in serum agreed with the genotypes inferred from the nucleotide sequence. Rocket immunoelectrophoresis using alpha-naphthyl acetate to detect enzymatic activity showed an absence of cross-reactive material, as expected. One additional individual with a silent phenotype did not show the same frameshift mutation. This was not unexpected, since there must be considerable molecular heterogeneity involved in causes for the silent cholinesterase phenotype. This is the first report of a molecular mechanism underlying the silent phenotype for serum cholinesterase. The analytical approach used was similar to the one we recently employed to identify the mutation that causes the atypical cholinesterase variant.  相似文献   

19.
We have isolated the human genomic DNA clone GSAA4 from a size-selected Bgl II library by hybridization to a probe derived from the human serum amyloid A gene GSAA1. Sequencing the 5' end of this clone revealed a region similar to the first exon of gene GSAA1 but with significant nucleotide differences and mutation of the 3' splice site. The restriction map of the GSAA4 clone corresponds to that for the locus "SAA4" recently reported by others. Sequence and hybridization details indicate that the locus in clone GSAA4 is a member of the human serum amyloid A gene family and contains a pseudogene. Isolating GSAA4 completes the collection of clones needed to account for all bands found in blot hybridizations of human DNA using serum amyloid A gene probes.  相似文献   

20.
The alpha-globin gene is expressed at a constitutively high level upon gene transfer into both erythroid and nonerythroid cells. The beta-globin gene, on the other hand, is dependent on the presence of a linked viral enhancer for its efficient expression upon transfer into heterologous cells. In this report, we describe a novel regulatory element within the structural alpha-globin gene which can activate its own promoter to result in a high level of expression in both erythroid and non-erythroid cells. This regulatory element does not appear to have the properties of a classical enhancer. While this element exerts a positive effect on its own promoter, we have demonstrated in a previous study that the same element exerts a negative effect on heterologous genes such as the beta- and gamma-globin genes. In this study, we localize this element to a 259 nucleotide fragment immediately downstream from the translation initiation codon which is partially overlapped by a DNase I hypersensitive domain only in erythroid cells. We propose that this element may activate the alpha-globin gene promoter in all cell types in vivo as it does in vitro. The specificity of erythroid expression of the alpha-globin gene in vivo is probably determined by a "permissive" chromatin configuration in erythroid cells and a "nonpermissive" configuration in non-erythroid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号