首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori is a human gastric pathogen that survives the strong acidity of the stomach by virtue of its urease activity. This activity produces ammonia, which neutralizes the bacterial microenvironment. UreI, an inner membrane protein, is essential for resistance to low pH and for the gastric colonization of mice by H. pylori. In the heterologous Xenopus oocytes expression system, UreI behaves like an H+-gated urea channel, and His-123 was found to be important for low pH activation. We investigated the role of UreI directly in H. pylori and showed that, in the presence of urea, strains expressing wild-type UreI displayed very rapid stimulation of extracellular ammonia production upon exposure to pH 相似文献   

2.
Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile. The gene complex encodes catalytic subunits (ureA/B), an acid-gated urea channel (ureI), and accessory assembly proteins (ureE-H). With the use of yeast two-hybrid analysis for determining protein-protein interactions, UreF as bait identified four interacting sequences encoding UreH, whereas UreG as bait detected five UreE sequences. These results were confirmed by coimmunoprecipitation and beta-galactosidase assays. Native PAGE immunoblotting of H. pylori inner membranes showed interaction of UreA/B with UreI, whereas UreI deletion mutants lacked this protein interaction. Deletion of ureE-H did not affect this interaction with UreI. Hence, the accessory proteins UreE/G and UreF/H form dimeric complexes and UreA/B form a membrane complex with UreI, perhaps enabling assembly of the urease apoenzyme at the membrane surface and immediate urea access to intrabacterial urease to allow rapid periplasmic neutralization.  相似文献   

3.
Helicobacter pylori can be regarded as a model pathogen for studying persistent colonization of humans. Phase-variable expression of Lewis blood-group antigens by H. pylori allows this microorganism to modulate the host T-helper-1-cell versus T-helper-2-cell response. We describe a model in which interactions between host lectins and pathogen carbohydrates facilitate asymptomatic persistence of H. pylori. This delicate balance, favourable for both the pathogen and the host, could lead to gastric autoimmunity in genetically susceptible individuals.  相似文献   

4.
Helicobacter pylori can colonize the gastric epithelium of humans, leading to the induction of an intense inflammatory response with the infiltration of mainly polymorphonuclear leucocytes (PMNs) and monocytes. These professional phagocytes appear to be a primary cause of the damage to surface epithelial layers, and probably contribute to the pathogenesis associated with persistent H. pylori infections. We have shown previously that H. pylori adheres to professional phagocytes, but is not engulfed efficiently, suggesting an antiphagocytic escape mechanism that is dependent on the pathogen's type IV secretion system. Here, we show that H. pylori induces the generation and extracellular release of oxygen metabolites as a consequence of its attachment to phagocytic cells, but is capable of surviving this response. The catalase activity of H. pylori is apparently essential for survival at the phagocytes' cell surface. Opsonization of H. pylori leads to an increased burst, and the inhibition of bacterial protein synthesis to a decreased one. Ca2+ concentration, cytoskeleton rearrangement and protein kinase C (PKC) are involved in the H. pylori-induced oxidative burst in both monocytes and PMNs. This survival phenomenon has important implications for both the persistence of this important pathogen and the host tissue damage that accompanies persistent H. pylori infection.  相似文献   

5.
Structure, function and localization of Helicobacter pylori urease.   总被引:3,自引:0,他引:3  
Helicobacter pylori is the causative agent of most cases of gastritis. Once acquired, H. pylori establishes chronic persistent infection; it is this long-term infection that, is a subset of patients, leads to gastric or duodenal ulcer, gastric cancer or gastric MALT lymphoma. All fresh isolates of H. pylori express significant urease activity, which is essential to survival and pathogenesis of the bacterium. A significant fraction of urease is associated with the surface of H. pylori both in vivo and in vitro. Surface-associated urease is essential for H. pylori to resist exposure to acid in the presence of urea. The mechanism whereby urease becomes associated with the surface of H. pylori is unique. This process, which we term "altruistic autolysis," involves release of urease (and other cytoplasmic proteins) by genetically programmed autolysis with subsequent adsorption of the released urease onto the surface of neighboring intact bacteria. To our knowledge, this is the first evidence of essential communal behavior in pathogenic bacteria; such behavior is crucial to understanding the pathogenesis of H. pylori.  相似文献   

6.
Accurate diagnosis of Helicobacter pylori infection is important in both clinical practice and clinical research. Molecular methods are highly specific and sensitive, and various PCR-based tests have been developed to detect H. pylori in gastric biopsy specimens. We optimized a sensitive and specific quantitative SYBR Green I real-time PCR assay for detection of H. pylori based on amplification of the fragment of a 26-kDa Helicobacter species-specific antigen gene that allows for detection of 5 bacterial cells per PCR sample. Under the assay conditions, SYBR Green I real-time PCR is highly reproducible with a precise log-linear relation in the range of six orders of magnitude of bacterial DNA concentrations. For accurate comparison of H. pylori infection in different tissue samples, the amount of total host DNA in each sample is normalized by TaqMan real-time PCR of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pseudogenes. The developed method was validated in prophilactically immunized and experimentally infected mice and revealed a level of H. pylori gastric colonisation that was below the limit of detection for a rapid urease test. This new method established for a quantitative analysis of H. pylori in the host's stomach may be useful in experimental studies evaluating new anti-H. pylori drugs and vaccines.  相似文献   

7.
Abstract Helicobacter pylori is a bacterial pathogen of humans that infects the gastric mucosa. This infection has been associated with gastritis, peptic ulcers, and gastric carcinomas. Diverse in vitro studies have described efficient adherence of H. pylori to different types of epithelial cells. Because of its varied effects on host cells, we have analysed signal transduction events in H. pyfori -infected epithelial cells. Our results show that H. pylori induces an increase in inositol phosphates in all cultured epithelial cells used, including HeLa, Henle 407, Hep-2, and the human gastric adenocarcinoma cell line AGS. Bacterial growth medium supernatants induce a similar response in the host cell. The increase in inositol phosphates is not related to redistribution of cytoskeletal proteins such as actin or α-actinin nor tyrosine-phosphorylation of host cell proteins. The inositol phosphate increase is also observed in cells infected with low or non-adherent H. pylori mutants or mutants defective in the vacuolating toxin or urease holoenzyme. These results indicate that inositol phosphate release in H. pytori -infected cells is not dependent on bacterial adherence, and that a soluble bacterial factor, but not the vacuolating toxin or urease holoenzyme, mediates such an effect.  相似文献   

8.
Exposure to unfavorable conditions results in the transformation of Helicobacter pylori, a gastric pathogen, from a bacillary form to a coccoid form. The mechanism and pathophysiological significance of this transformation remain unclear. The generation of the superoxide radical by H. pylori has previously been shown to inhibit the bactericidal action of nitric oxide, the concentration of which is relatively high in gastric juice. With the use of chemiluminescence probes, both the quality and quantity of reactive oxygen species generated by H. pylori have now been shown to change markedly during the transformation from the bacillary form to the coccoid form. The transformation of H. pylori was associated with oxidative modification of cellular proteins, including urease, an enzyme required for the survival of this bacterium in acidic gastric juice. Although the cellular abundance of urease protein increased during the transformation, the specific activity of the enzyme decreased and it underwent aggregation. Specific activities of both superoxide dismutase and catalase in H. pylori also decreased markedly during the transformation. The transformation of H. pylori was also associated with oxidative modification of DNA, as revealed by the generation of 8-hydroxyguanine, and subsequent DNA fragment. These observations indicate that oxidative stress elicited by endogenously generated reactive oxygen species might play an important role in the transformation of H. pylori from the bacillary form to the coccoid form.  相似文献   

9.
The gastric human pathogen Helicobacter pylori faces formidable challenges in the stomach including reactive oxygen and nitrogen intermediates. Here we demonstrate that arginase activity, which inhibits host nitric oxide production, is post-translationally stimulated by H. pylori thioredoxin (Trx) 1 but not the homologous Trx2. Trx1 has chaperone activity that renatures urea- or heat-denatured arginase back to the catalytically active state. Most reactive oxygen and nitrogen intermediates inhibit arginase activity; this damage is reversed by Trx1, but not Trx2. Trx1 and arginase equip H. pylori with a "renox guardian" to overcome abundant nitrosative and oxidative stresses encountered during the persistence of the bacterium in the hostile gastric environment.  相似文献   

10.
Background:  Nickel-dependent urease activity and nickel supply are essential for successful colonization of Helicobacter pylori in the acidic environment of the human stomach. A comparison of media effects on these two activities have never been carried out. Additionally to H. pylori we cultivated an Escherichia coli strain expressing the urease and the nickel transporter NixA of H. pylori on the same four media and measured in all cases urease and nickel uptake activity.
Aim:  To compare nickel uptake and urease activity on an inter- and intraspecies level.
Results:  In H. pylori nickel uptake (four to 200 times) and urease activities (400 to 30,000 times) were found to be much higher in comparison to the tested E. coli strain after growth on all media. These differences could not be explained by reduced protein amounts in the heterologous host E. coli . On which media the two bacteria extracted most of the nickel were organism-dependent: E. coli on Brucella Broth, H. pylori on Trypticase Soy Broth, and Minimal Media.
Conclusion:  H. pylori took nickel much more efficiently up than E. coli . The observed differences in urease activity are most likely due to additional protein components absent in the recombinant E. coli strain. The observed variety in nickel uptake and urease activities on the different media in the same organism depended on the intrinsic nickel content and chelating capacities of media components. Different culture conditions may lead to varying results; generalizations should be concluded only after excluding their media dependence.  相似文献   

11.
BACKGROUND: Extracellular urease proteins located on the surface of Helicobacter pylori are gastric mucin-targeted adhesins, which play an important role in infection and colonization to the host. In this study we have determined the inhibitory activity of a variety of melanoidins, protein-derived advanced Maillard reaction products, ubiquitously found in heat-treated foods, on urease-gastric mucin adhesion. In addition, we have determined the anticolonization effect of melanoidin I, prepared by the Maillard reaction between casein and lactose, in an animal model and in human subjects infected with this bacterium. METHODS: The inhibitory activity of each compound was determined by a competitive binding assay of labeled gastric mucin to plate-immobilized urease. Melanoidin I was used in an in vivo trial using euthymic hairless mice as an infection model. Melanoidin I was consumed for 8 weeks by subjects infected with H. pylori. The [(13)C] urease breath test and H. pylori-specific antigen in the stool (HpSA) test were performed on subjects at week 0 and week 8. RESULTS: A variety of food protein-derived melanoidins strongly inhibited urease-gastric mucin adhesion in the concentration range of 10 micro g/ml to 100 micro g/ml. In particular, melanoidin I significantly (p <.05) suppressed colonization of H. pylori in mice when given for 10 weeks via the diets. Eight weeks daily intake of 3 g melanoidin I significantly (p <.05) decreased the optical density of HpSA in subjects. CONCLUSION: Foods containing protein-derived melanoidins may be an alternative to antibiotic-based therapy to prevent H. pylori that combines safety, ease of administration and efficacy.  相似文献   

12.
Cell surface characteristics of Helicobacter pylori   总被引:4,自引:0,他引:4  
Abstract Helicobacter pylori is an important gastroduodenal pathogen of humans. Immunological and structural studies have been performed on the phospholipids, lipopolysaccharides (LPS) and some surface proteins of H. pylori strains. H. pylori LPS has, in general, low immunological activity and this property may aid the survival of this chronic infection. Nevertheless, H. pylori LPS has been found to influence the quality of gastric mucin and to stimulate pepsinogen secretion, thereby contributing to gastric disease. A number of putative adhesins of the bacterium have been described. This multiplicity of adhesins may reflect that H. pylori adherence is a multi-step process involving different interactions, and that different adhesins may mediate adherence to various sites in gastric tissue.  相似文献   

13.
Infection by Helicobacter pylori leads to injury of the gastric epithelium and a cellular infiltrate that includes CD4+ T cells. H. pylori binds to class II MHC molecules on gastric epithelial cells and induces their apoptosis. Because urease is an abundant protein expressed by H. pylori, we examined whether it had the ability to bind class II MHC and induce apoptosis in class II MHC-bearing cells. Flow cytometry revealed the binding of PE-conjugated urease to class II MHC+ gastric epithelial cell lines. The binding of urease to human gastric epithelial cells was reduced by anti-class II MHC Abs and by staphylococcal enterotoxin B. The binding of urease to class II MHC was confirmed when urease bound to HLA-DR1-transfected COS-1 (1D12) cells but not to untransfected COS-1 cells. Urease also bound to a panel of B cell lines expressing various class II MHC alleles. Recombinant urease induced apoptosis in gastric epithelial cells that express class II MHC molecules, but not in class II MHC- cells. Also, Fab from anti-class II MHC and not from isotype control Abs blocked the induction of apoptosis by urease in a concentration-dependent manner. The adhesin properties of urease might point to a novel and important role of H. pylori urease in the pathogenesis of H. pylori infection.  相似文献   

14.
Unique mechanism of Helicobacter pylori for colonizing the gastric mucus   总被引:2,自引:0,他引:2  
Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.  相似文献   

15.
Two characteristic monoclonal antibodies (HpU-2 and -18) out of 26 monoclonal antibodies (HpU-1 approximately 26) produced against Helicobacter pylori (H. pylori) urease showed a strong inhibitory effect against the enzymatic activity of the urease. Epitope mapping about some monoclonal antibodies of the HpU-series inhibiting enzymatic activity was performed by using a surface plasmon resonance apparatus and by digesting H. pylori urease with trypsin, followed by mass spectroscopy. The sequences of the epitopes recognized by HpU-2 and -18 were SVELIDIGGNRRIFGFNALVDR (22 mer) and IFGFNALVDR (10 mer), respectively. The former sequence is present as a part of a loop structure at a position close to the C-terminal of the alpha-subunit of H. pylori urease, although it has been suggested that the active site of the urease resides in the beta-subunit. The above peptide (22 mer) was chemically synthesized in a linear and cyclic form, and its conjugate with BSA was immunized in rabbits. The resultant serum induced by the linear form could specifically bind to H. pylori infecting human gastric mucosa. These results suggest that the above sequence (22 mer) must be an important epitope, although it locates in the alpha-subunit but not in the beta-subunit.  相似文献   

16.
Helicobacter pylori, a gram-negative spiral-shaped bacterium, specifically colonizes the stomachs of humans. Once established in this harsh ecological niche, it remains there virtually for the entire life of the host. To date, numerous virulence factors responsible for gastric colonization, survival, and tissue damage have been described for this bacterium. Nevertheless, a critical feature of H. pylori is its ability to establish a long-lasting infection. In fact, although good humoral (against many bacterial proteins) and cellular responses are observed, most infected persons are unable to eradicate the infection. A large body of evidence has shown that the interaction between H. pylori and the host is very complex. In addition to the effect of virulence factors on colonization and persistence, binding of specialized bacterial proteins, known as receptins, to certain host molecules (ligands) could explain the success of H. pylori as a chronically persisting pathogen. Some of the reported interactions are of high affinity, as revealed by their calculated dissociation constant. This review examines the binding of host proteins (serum and extracellular matrix proteins) to H. pylori and considers the significance of these interactions in the infectious process. A more thorough understanding of the kinetics of these receptin interactions could provide a new approach to preventing deeper tissue invasion in H. pylori infections and could represent an alternative to antibiotic treatment.  相似文献   

17.
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.  相似文献   

18.
Helicobacter pylori, a gram-negative spiral-shaped bacterium, specifically colonizes the stomachs of humans. Once established in this harsh ecological niche, it remains there virtually for the entire life of the host. To date, numerous virulence factors responsible for gastric colonization, survival, and tissue damage have been described for this bacterium. Nevertheless, a critical feature of H. pylori is its ability to establish a long-lasting infection. In fact, although good humoral (against many bacterial proteins) and cellular responses are observed, most infected persons are unable to eradicate the infection. A large body of evidence has shown that the interaction between H. pylori and the host is very complex. In addition to the effect of virulence factors on colonization and persistence, binding of specialized bacterial proteins, known as receptins, to certain host molecules (ligands) could explain the success of H. pylori as a chronically persisting pathogen. Some of the reported interactions are of high affinity, as revealed by their calculated dissociation constant. This review examines the binding of host proteins (serum and extracellular matrix proteins) to H. pylori and considers the significance of these interactions in the infectious process. A more thorough understanding of the kinetics of these receptin interactions could provide a new approach to preventing deeper tissue invasion in H. pylori infections and could represent an alternative to antibiotic treatment.  相似文献   

19.
Abstract Helicobacter pylori colonises the gastric mucosa of humans and causes both antral gastritis and duodenal ulcer disease. Exactly how H. pylori causes disease is not known but several pathogenic determinants have been proposed for the organism. These include adhesins, cytotoxins and a range of different enzymes including urease, catalase and superoxide dismutase. Surface molecules of H. pylori such as flagella, lipopolysaccharide, the urease enzyme and outer membrane proteins are putative adhesin molecules. While phosphatidylethanolamine and the Lewisb blood group antigen have been proposed as receptor molecules for the organism the exact mechanism by which H. pylori adheres to the gastric mucosa has still to be identified. Characterisation of the adhesins of H. pylori could lead to the development of adhesin analogues for use in the inhibition of colonisation and improved therapy for ulcer disease. In vivo studies with isogenic mutants which are incapable of adhering to the gastric mucosa would greatly clarify the significance of adherence. Such mutants could possibly be useful as a vaccine against infection with wild-type organisms.  相似文献   

20.
Colonization by Helicobacter pylori partly depends on acid-dependent adherence by urease to gastric mucin. To further verify the relevance of urease adherence to colonization, the influence of acidity on the binding sites of H. pylori urease was investigated. When enzyme-based in vitro ligand capture assays were used, the effect of acidity on the binding site of H. pylori urease was determined against a backdrop medium consisting of acidic buffers simulating the luminal side of gastric mucus. A high degree of stability was exhibited by adherent urease, suggesting a pivotal role by the denatured enzyme in the persistence of the bacterium within the acidified compartment of gastric mucus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号