首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anti-tuberculosis vaccine, Mycobacterium bovis BCG, has been used worldwide, but its protective efficacy is variable against adult pulmonary tuberculosis. In this study, immune responses of antigen 85A (Ag85A) and heat-shock protein X (HspX) antigen of Mycobacterium tuberculosis were investigated during acute and stationary stage of infection in the murine aerosol TB challenge model and their protective effects were evaluated against progressive tuberculosis. A high level of Ag85A-specific IFN-γ production was induced from the early stage of the infection, whereas HspX-specific IFN-γ production was increased in the later stationary stage. As a subunit vaccine, Ag85A and HspX antigen vaccine induced high levels of IFN-γ, and a vaccine comprising both antigens induced the highest level of IFN-γ. At 30 days post-challenge, the Ag85A subunit vaccine was protective against M. tuberculosis challenge, but the HspX subunit vaccine was not. Interestingly, the HspX antigen vaccine induced significant protective efficacy at 90 days post-challenge. Moreover, the combined antigen vaccine induced the highest protective efficacy against M. tuberculosis challenge both at 30 days and 90 days post-challenge. These results suggest that the vaccine comprising Ag85A and HspX antigen which react in different stages of infection is highly protective against progressive tuberculosis.  相似文献   

2.
Vaccination with Bacille Calmette-Guérin (BCG) has traditionally been used for protection against disease caused by the bacterium Mycobacterium tuberculosis (M.tb). The efficacy of BCG, especially against pulmonary tuberculosis (TB) is variable. The best protection is conferred in temperate climates and there is close to zero protection in many tropical areas with a high prevalence of both tuberculous and non-tuberculous mycobacterial species. Although interferon (IFN)-γ is known to be important in protection against TB disease, data is emerging on a possible role for interleukin (IL)-17 as a key cytokine in both murine and bovine TB vaccine studies, as well as in humans. Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) is a novel TB vaccine designed to enhance responses induced by BCG. Antigen-specific IFN-γ production has already been shown to peak one week post-MVA85A vaccination, and an inverse relationship between IL-17-producing cells and regulatory T cells expressing the ectonucleosidease CD39, which metabolises pro-inflammatory extracellular ATP has previously been described. This paper explores this relationship and finds that consumption of extracellular ATP by peripheral blood mononuclear cells from MVA85A-vaccinated subjects drops two weeks post-vaccination, corresponding to a drop in the percentage of a regulatory T cell subset expressing the ectonucleosidase CD39. Also at this time point, we report a peak in co-production of IL-17 and IFN-γ by CD4(+) T cells. These results suggest a relationship between extracellular ATP and effector responses and unveil a possible pathway that could be targeted during vaccine design.  相似文献   

3.
T-cell based IFN-γ release assays do not permit distinction of active tuberculosis (TB) from successfully treated disease or latent M. tuberculosis infection. We postulated that IFN-γ and IL-2 cytokine profiles of antigen-specific T cells measured by flow-cytometry ex vivo might correlate with TB disease activity in vivo. Tuberculin (PPD), ESAT-6 and CFP-10 were used as stimuli to determine antigen-specific cytokine profiles in CD4 T cells from 24 patients with active TB and 28 patients with successfully treated TB using flow-cytometry. Moreover, 25 individuals with immunity consistent with latent M. tuberculosis infection and BCG-vaccination, respectively, were recruited. Although the frequency of cytokine secreting PPD reactive CD4 T cells was higher in patients with active TB compared to patients with treated TB (median 0.81% vs. 0.39% of CD4 T cells, p?=?0.02), the overlap in frequencies precluded distinction between the groups on an individual basis. When assessing cytokine profiles, PPD specific CD4 T cells secreting both IFN-γ and IL-2 predominated in treated TB, latent infection and BCG-vaccination, whilst in active TB the cytokine profile was shifted towards cells secreting IFN-γ only (p<0.0001). Cytokine profiles of ESAT-6 or CFP-10 reactive CD4 T cells did not differ between the groups. Receiver operator characteristics (ROC) analysis revealed that frequencies of PPD specific IFN-γ/IL-2 dual-positive T cells below 56% were an accurate marker for active TB (specificity 100%, sensitivity 70%) enabling effective discrimination from non-active states. In conclusion, a frequency lower than 56% IFN-γ/IL-2 dual positive PPD-specific circulating CD4 T-cells is strongly indicative of active TB.  相似文献   

4.
Development of a protective vaccine against Leishmania depends on antigen formulation and adjuvants that induce specific immunity and long-lasting immune responses. We previously demonstrated that BALB/c mice intranasally vaccinated with a plasmid DNA encoding the p36/LACK leishmanial antigen (LACK-DNA) develop a protective immunity for up to 3 months after vaccination, which was linked with the systemic expression of vaccine mRNA in peripheral organs. In this study, LACK-DNA vaccine was associated with biocompatible chitosan microparticles cross-linked with glyceraldehyde (CMC) to boost the long-lasting immunity against the late Leishmania infantum challenge. Infection at 7 days, 3 or 6 months after vaccination resulted in significantly lower parasite loads when compared with non-vaccinated controls. Besides, LACK-DNA-chitosan vaccinated mice showed long-time protection observed after the late time point challenge. The achieved protection was correlated with an enhanced spleen cell responsiveness to parasite antigens, marked by increased proliferation and IFN-γ as well as decreased IL-10 production. Moreover, we found diminished systemic levels of TNF-α that was compatible with the better health condition observed in LACK-DNA/CMC vaccinated-infected mice. Together, our data indicate the feasibility of chitosan microparticles as a delivery system tool to extend the protective immunity conferred by LACK-DNA vaccine, which may be explored in vaccine formulations against Leishmania parasite infections.  相似文献   

5.

Background

Better delivery systems are needed for routinely used vaccines, to improve vaccine uptake. Many vaccines contain alum or alum based adjuvants. Here we investigate a novel dry-coated densely-packed micro-projection array skin patch (Nanopatch™) as an alternate delivery system to intramuscular injection for delivering an alum adjuvanted human papillomavirus (HPV) vaccine (Gardasil®) commonly used as a prophylactic vaccine against cervical cancer.

Methodology/Principal Findings

Micro-projection arrays dry-coated with vaccine material (Gardasil®) delivered to C57BL/6 mouse ear skin released vaccine within 5 minutes. To assess vaccine immunogenicity, doses of corresponding to HPV-16 component of the vaccine between 0.43±0.084 ng and 300±120 ng (mean ± SD) were administered to mice at day 0 and day 14. A dose of 55±6.0 ng delivered intracutaneously by micro-projection array was sufficient to produce a maximal virus neutralizing serum antibody response at day 28 post vaccination. Neutralizing antibody titres were sustained out to 16 weeks post vaccination, and, for comparable doses of vaccine, somewhat higher titres were observed with intracutaneous patch delivery than with intramuscular delivery with the needle and syringe at this time point.

Conclusions/Significance

Use of dry micro-projection arrays (Nanopatch™) has the potential to overcome the need for a vaccine cold chain for common vaccines currently delivered by needle and syringe, and to reduce risk of needle-stick injury and vaccine avoidance due to the fear of the needle especially among children.  相似文献   

6.
To prevent important infectious diseases such as tuberculosis, malaria and HIV, vaccines inducing greater T cell responses are required. In this study, we investigated whether fusion of the M. tuberculosis antigen 85A to recently described adjuvant IMX313, a hybrid avian C4bp oligomerization domain, could increase T cell responses in pre-clinical vaccine model species. In mice, the fused antigen 85A showed consistent increases in CD4(+) and CD8(+) T cell responses after DNA and MVA vaccination. In rhesus macaques, higher IFN-γ responses were observed in animals vaccinated with MVA-Ag85A IMX313 after both primary and secondary immunizations. In both animal models, fusion to IMX313 induced a quantitative enhancement in the response without altering its quality: multifunctional cytokines were uniformly increased and differentiation into effector and memory T cell subsets was augmented rather than skewed. An extensive in vivo characterization suggests that IMX313 improves the initiation of immune responses as an increase in antigen 85A specific cells was observed as early as day 3 after vaccination. This report demonstrates that antigen multimerization using IMX313 is a simple and effective cross-species method to improve vaccine immunogenicity with potentially broad applicability.  相似文献   

7.
8.
To date, there is no vaccine available against human leishmaniasis. Although some vaccination protocols can induce immunity in murine models, they fail to induce protection in humans. The reasons for that remain unclear. The aim of the present study was to characterize the changes in the pattern of the immune response during subcutaneous vaccination with Leishvacin® in mice. We also investigated whether IFN-γ and nitric oxide synthase are indispensable for the protection elicited by the vaccine. C57BL/6 WT vaccinated mice showed smaller lesions and fewer numbers of parasites in footpads until 8 weeks post-infection. Up to this time, they produced higher levels of IFN-γ, IL-2, IL-4, IL-17A and IL-10 and higher specific antibody response than control non-vaccinated mice. Moreover, we showed that IFN-γ, most likely by induction of iNOS expression, is essential for immunity. However, after 12 weeks of infection, we observed loss of difference in lesion size and parasite burden between the groups. Loss of resistance was associated with the disappearance of differences in cytokine patterns between vaccinated and control mice, but not of antibody response, which remained different until a later time of infection. The reversal of resistance to L. amazonensis could not be explained by upregulation of regulatory cytokines. Our data point to a subversion of the host immune response by L. amazonensis even when a protective response was previously induced.  相似文献   

9.
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4(+) T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4(+) epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IA(b). We screened these peptides for recognition by IFN-γ producing CD4(+) T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-γ producing CD4(+) T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4(+) targets in large pathogens. Finally, we examined the nature of linkage between CD4(+) T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4(+) T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4(+) response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made.  相似文献   

10.
Viral vaccine vectors have emerged as an attractive strategy for the development of a human immunodeficiency virus (HIV) vaccine. Recombinant Newcastle disease virus (rNDV) stands out as a vaccine vector since it has a proven safety profile in humans, it is a potent inducer of both alpha interferon (IFN-α) and IFN-β) production, and it is a potent inducer of dendritic cell (DC) maturation. Our group has previously generated an rNDV vector expressing a codon-optimized HIV Gag protein and demonstrated its ability to induce a Gag-specific CD8(+) T cell response in mice. In this report we demonstrate that the Gag-specific immune response can be further enhanced by the targeting of the rNDV-encoded HIV Gag antigen to DCs. Targeting of the HIV Gag antigen was achieved by the addition of a single-chain Fv (scFv) antibody specific for the DC-restricted antigen uptake receptor DEC205 such that the DEC205 scFv-Gag molecule was encoded for expression as a fusion protein. The vaccination of mice with rNDV coding for the DC-targeted Gag antigen induced an enhanced Gag-specific CD8(+) T cell response and enhanced numbers of CD4(+) T cells and CD8(+) T cells in the spleen relative to vaccination with rNDV coding for a nontargeted Gag antigen. Importantly, mice vaccinated with the DEC205-targeted vaccine were better protected from challenge with a recombinant vaccinia virus expressing the HIV Gag protein. Here we demonstrate that the targeting of the HIV Gag antigen to DCs via the DEC205 receptor enhances the ability of an rNDV vector to induce a potent antigen-specific immune response.  相似文献   

11.
《Cytokine》2011,53(3):190-193
Th1 and Th2 cytokines play key role in protection from and pathogenesis of mycobacterial infection and their dynamic changes may predict clinical outcome of the patient. Patients with tuberculosis (TB) have a poorer cellular immune response to recombinant 32-kDa antigen (Ag) of Mycobacterium bovis (r32-kDa M. bovis) than do healthy volunteers. The basis for this observation was studied by evaluating the Th1 (gamma interferon [IFN-γ]) produced in response to the r32-kDa Ag M. bovis by peripheral blood mononuclear cells (PBMC) from patients with pulmonary TB (n = 20), extra-pulmonary TB (n = 13) and from healthy volunteers (n = 9). Recombinant 32-kDa M. bovis stimulated PBMC from TB patients produced significantly lower levels of IFN-γ at 0 month, and increased at 2–4, and 6 months of treatment and were highly significant (p < 0.000) compared to the responses in controls. The ratios of IFN-γ to IL-10 were low in patients newly diagnosed and improved both during and after treatment. The present study concludes that the levels of in vitro response to M. bovis BCG r32-kDa Ag leading to the specific release of IFN-γ increased after anti-tuberculosis treatment and seems to reflect the clinical status of the patient, thus reiterating the utility of this antigen in T cell based assays as a surrogate marker of cell mediated responses.  相似文献   

12.
Immunization with plasmid DNA, a relatively novel technique, is a promising vaccination technique. To improve the immune response by DNA vaccination various methods have been used, such as chemical adjuvants or immunomodulatory molecules formulated into microparticles or liposomes. The aim of this research is to evaluate the immune responses of sheep immunized with DNA plasmids encoding Toxoplasma gondii dense granule antigen GRA7 formulated into three different adjuvant formulations. Sixty sheep were injected intramuscularly with the DNA plasmids. Twelve received the liposome-formulated plasmid pVAXIgGRA7, 12 Emulsigen P formulated plasmid pVAXIgGRA7 and 12 Emulsigen D formulated plasmid pVAXIgGRA7. Twelve animals were used as a control and received the vector alone. All the animals were inoculated at week 0, and week 4. Immunization of the sheep with plasmids encoding GRA7, with the different adjuvant formulations, effectively primed the immune response. After the first inoculation, moderate to high antibody responses were observed with the three different adjuvant formulations. A significantly elevated specific IgG2 response was observed in the sheep immunized with liposomes and Emulsigen D as adjuvants. In the group immunized with Emulsigen P as an adjuvant, lower IgG1 and IgG2 antibody levels were developed compared to the other treatment groups. In all the immunized groups, DNA immunization stimulated a IFN-γ response. No antibody or IFN-γ responses were detected in the control group immunized with an empty plasmid or not immunized. These results indicate that intramuscular immunization of sheep with a DNA vaccine with the adjuvants liposomes and Emulsigen D induce a significant immune response against T. gondii.  相似文献   

13.
14.
Zhao S  Zhao Y  Mao F  Zhang C  Bai B  Zhang H  Shi C  Xu Z 《PloS one》2012,7(2):e31908
Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.  相似文献   

15.
16.
Human peripheral T cells, but not non-T cells, expressed receptors for interleukin 2 when treated with partially purified human gamma interferon (IFN-γ). The expression of the receptors was evidenced by proliferation of IFN-γ-treated cells in the presence of IL 2 and absorption of IL 2 by treated cells. The IFN-γ-induced expression of IL 2 receptors was associated with partially purified IFN-γ (approximately 2000-fold purified) and was blocked by treatment of IFN-γ with specific antibodies or destruction of IFN-γ by acid pH. IFN-γ induced expression of receptors in a manner similar to that of concanavalin A (Con A). Further, Con A induction of expression of receptors was blocked by simultaneous treatment of cultures with anti-IFN-γ sera, suggesting that IFN-γ was involved in Con A induction of IL 2 receptors. T cells in culture are continuously exposed to various forms of antigen stimulation, and thus the function of IFN-γ may be the enhancement of expression of antigen- or mitogen-induced IL 2 receptors in a manner similar to its enhancement of expression of antigens of the major histocompatibility complex.  相似文献   

17.
The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83(127-135) (PTNAAFDKL) as the dominant H-2(b)-restricted CD8(+) T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8(+) T cell responses to MPT83(127-135). Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines.  相似文献   

18.
Vaccines are considered by many to be one of the most successful medical interventions against infectious diseases. But many significant obstacles remain, such as optimizing DNA vaccines for use in humans or large animals. The amount of doses, route and easiness of administration are also important points to consider in the design of new DNA vaccines. Heterologous prime-boost regimens probably represent the best hope for an improved DNA vaccine strategy. In this study, we have shown that heterologous prime-boost vaccination against tuberculosis (TB) using intranasal BCG priming/DNA-HSP65 boosting (BCGin/DNA) provided significantly greater protection than that afforded by a single subcutaneous or intranasal dose of BCG. In addition, BCGin/DNA immunization was also more efficient in controlling bacterial loads than were the other prime-boost schedules evaluated or three doses of DNA-HSP65 as a naked DNA. The single dose of DNA-HSP65 booster enhanced the immunogenicity of a single subcutaneous BCG vaccination, as evidenced by the significantly higher serum levels of anti-Hsp65 IgG2a Th1-induced antibodies, as well as by the significantly greater production of IFN-γ by antigen-specific spleen cells. The BCG prime/DNA-HSP65 booster was also associated with better preservation of lung parenchyma. The improvement of the protective effect of BCG vaccine mediated by a DNA-HSP65 booster suggests that our strategy may hold promise as a safe and effective vaccine against TB.  相似文献   

19.
In both humans and animals, controversy exists concerning the duration of protection induced by BCG vaccine against tuberculosis (TB) and whether revaccination enhances protection. A long-term study was undertaken to determine whether BCG-vaccinated calves would be protected against challenge with Mycobacterium bovis 2½ years after vaccination and to determine the effect of revaccination after 2 years. Seventy–nine calves were divided into five groups (n = 15–17 calves/group) with four of the groups vaccinated subcutaneously with 105 CFU of BCG Danish at 2–4 weeks of age and the fifth group serving as non-vaccinated controls. Three of the four BCG-vaccinated groups were revaccinated 2 years after the initial vaccination. One BCG-vaccinated group was revaccinated with BCG. A second group was vaccinated subcutaneously with a TB protein vaccine consisting of biopolyester particles (Biobeads) displaying two mycobacterial proteins, ESAT-6 and Antigen 85A, mixed with an adjuvant. A third group was vaccinated with TB proteins from M. bovis culture filtrate, mixed with an adjuvant. Twenty-three weeks after the BCG revaccination, all animals were challenged endotracheally with virulent M. bovis and a further 13 weeks later, animals were killed and necropsied to determine protection against TB. The BCG-vaccinated animals produced positive tuberculin caudal fold intradermal (15 of 62 animals) and IFN-γ TB test responses (six of 62 animals) at 6 months after vaccination, but not at subsequent time-points compared to the non-vaccinated animals. Calves receiving a single vaccination with BCG vaccine 2½ years prior to challenge were not protected against TB, while those revaccinated with BCG 2 years after the initial vaccination displayed significant reductions in lung and pulmonary lymph node lesion scores compared to the non-vaccinated animals. In contrast, no reduction in lesion scores was observed in the animals revaccinated with the TB protein vaccines with their immune responses biased towards induction of antibody.  相似文献   

20.
Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号