首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
于瑞嵩  宗文明  周志华 《微生物学报》2011,51(11):1468-1475
摘要:【目的】探讨一种构建异源表达【FeFe】氢酶的重组大肠杆菌的新方法。【方法】通过同源重组,依次将来源于丙酮丁醇梭菌中促进【FeFe】氢酶成熟的3 个辅助基因hydE、hydF 和hydG 分别整合到大肠杆菌BW2513-10(缺失氢酶基因) 的丙酮酸甲酸脱氢酶(ybiW)、乳酸脱氢酶(ldh) 和乙醇脱氢酶(adhE) 编码基因位点上。在此基础上进一步将含有来源于丁酸梭菌的氢酶基因的表达载体转化上述重组菌,并对转化子的氢酶活性进行分析。【结果】PCR 和RT-PCR 的检测结果表明,3 个辅助基因都  相似文献   

2.
3.
Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.  相似文献   

4.
Oxygen sensitivity of hydrogenase is a critical issue in efficient biological hydrogen production. In the present study, oxygen-tolerant [NiFe]-hydrogenase from the marine bacterium, Hydrogenovibrio marinus, was heterologously expressed in Escherichia coli, for the first time. Recombinant E. coli BL21 expressing H. marinus [NiFe]-hydrogenase actively produced hydrogen, but the parent strain did not. Recombinant H. marinus hydrogenase required both nickel and iron for biological activity. Compared to the recombinant E. coli [NiFe]-hydrogenase 1 described in our previous report, recombinant H. marinus [NiFe]-hydrogenase displayed 1.6- to 1.7-fold higher hydrogen production activity in vitro. Importantly, H. marinus [NiFe]-hydrogenase exhibited relatively good oxygen tolerance in analyses involving changes of surface aeration and oxygen proportion within a gas mixture. Specifically, recombinant H. marinus [NiFe]-hydrogenase produced ∼7- to 9-fold more hydrogen than did E. coli [NiFe]-hydrogenase 1 in a gaseous environment containing 5-10% (v/v) oxygen. In addition, purified H. marinus [NiFe]-hydrogenase displayed a hydrogen evolution activity of ∼28.8 nmol H2/(min mg protein) under normal aerobic purification conditions. Based on these results, we suggest that oxygen-tolerant H. marinus [NiFe]-hydrogenase can be employed for in vivo and in vitro biohydrogen production without requirement for strictly anaerobic facilities.  相似文献   

5.
Stapleton JA  Swartz JR 《PloS one》2010,5(12):e15275

Background

[FeFe] hydrogenase enzymes catalyze the formation and dissociation of molecular hydrogen with the help of a complex prosthetic group composed of common elements. The development of energy conversion technologies based on these renewable catalysts has been hindered by their extreme oxygen sensitivity. Attempts to improve the enzymes by directed evolution have failed for want of a screening platform capable of throughputs high enough to adequately sample heavily mutated DNA libraries. In vitro compartmentalization (IVC) is a powerful method capable of screening for multiple-turnover enzymatic activity at very high throughputs. Recent advances have allowed [FeFe] hydrogenases to be expressed and activated in the cell-free protein synthesis reactions on which IVC is based; however, IVC is a demanding technique with which many enzymes have proven incompatible.

Methodology/Principal Findings

Here we describe an extremely high-throughput IVC screen for oxygen-tolerant [FeFe] hydrogenases. We demonstrate that the [FeFe] hydrogenase CpI can be expressed and activated within emulsion droplets, and identify a fluorogenic substrate that links activity after oxygen exposure to the generation of a fluorescent signal. We present a screening protocol in which attachment of mutant genes and the proteins they encode to the surfaces of microbeads is followed by three separate emulsion steps for amplification, expression, and evaluation of hydrogenase mutants. We show that beads displaying active hydrogenase can be isolated by fluorescence-activated cell-sorting, and we use the method to enrich such beads from a mock library.

Conclusions/Significance

[FeFe] hydrogenases are the most complex enzymes to be produced by cell-free protein synthesis, and the most challenging targets to which IVC has yet been applied. The technique described here is an enabling step towards the development of biocatalysts for a biological hydrogen economy.  相似文献   

6.
Aims: The aim of this study was to explore and characterize the genetic diversity of [FeFe] hydrogenases in a representative set of strains from Clostridium sp. and to reveal the existence of neither yet detected nor characterized [FeFe] hydrogenases in hydrogen‐producing strains. Methods and Results: The genomes of 57 Clostridium strains (34 different genotypic species), representing six phylogenetic clusters based on their 16S rRNA sequence analysis (cluster I, III, XIa, XIb, XIV and XVIII), were screened for different [FeFe] hydrogenases. Based on the obtained alignments, ten pairs of [FeFe] hydrogenase cluster‐specific degenerate primers were newly designed. Ten Clostridium strains were screened by PCRs to assess the specificity of the primers designed and to examine the genetic diversity of [FeFe] hydrogenases. Using this approach, a diversity of hydrogenase genes was discovered in several species previously shown to produce hydrogen in bioreactors: Clostridium sartagoforme, Clostridium felsineum, Clostridium roseum and Clostridium pasteurianum. Conclusions: The newly designed [FeFe] hydrogenase cluster‐specific primers, targeting the cluster‐conserved regions, allow for a direct amplification of a specific hydrogenase gene from the species of interest. Significance and Impact of the Study: Using this strategy for a screening of different Clostridium ssp. will provide new insights into the diversity of hydrogenase genes and should be a first step to study a complex hydrogen metabolism of this genus.  相似文献   

7.
Two recombinant Escherichia coli strains expressing different levels of an interferon fusion protein as inclusion bodies have been studied by Fourier transform infrared (FT-IR) microspectroscopy. A marker band at 1628 cm(-1) allowed monitoring of the protein expression by direct analysis of cell pellets in a rapid, non-invasive and quantitative way. The results demonstrate that FT-IR microspectroscopy is a technique of potential biotechnological interest for studying inclusion body formation.  相似文献   

8.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

9.
The purpose of the present study was to evaluate the use of a non-innocent ligand as a surrogate of the anchored [4Fe4S] cubane in a synthetic mimic of the [FeFe] hydrogenase active site. Reaction of 2,3-bis(diphenylphosphino) maleic anhydride (bma) with [Fe2(CO)6(µ-pdt)] (propanedithiolate, pdt = S(CH2)3 S) in the presence of Me3NO-2H2O afforded the monosubstituted derivative [Fe2(CO)5(Me2NCH2PPh2)(µ-pdt)] (1). This results from the decomposition of the bma ligand and the apparent C-H bond cleavage in the released trimethylamine. Reaction under photolytic conditions afforded [Fe2(CO)4(bma)(µ-pdt)] (2). Compounds 1 and 2 were characterized by IR, NMR and X-ray diffraction. Voltammetric study indicated that the primary reduction of 2 is centered on the bma ligand.  相似文献   

10.
A fully active analog of human parathyroid hormone (hPTH) has been produced by recombinant expression in Escherichia coli. Initially, a nucleotide sequence encoding hPTH(1-34)-Asp-Pro was ligated to a proinsulin gene in the plasmid pUC8, for the eventual expression of a fusion protein of 137 amino acids. Unexpectedly, the proinsulin gene and 340 bp downstream were deleted by an unknown mechanism during transformation of the E. coli. This resulted in a new plasmid encoding a small (72-amino acid) fusion product of hPTH(1-34)-Asp35-Pro36-X, where X is a 36-residue "arbitrary" downstream sequence of pUC8. The fusion product was efficiently expressed and the hPTH analog, [Asp35]hPTH-(1-35), was readily released by acid cleavage, with a yield of 100 mg/L. This analog had an effective concentration for half-maximal adenylyl cyclase stimulation (EC50) in rat osteosarcoma cells of 14 nM, which was identical to that for hPTH-(1-34). In the ovariectomized rat model of osteoporosis, [Asp35]hPTH-(1-35) was fully active as a bone anabolic agent.  相似文献   

11.
AIMS: The main goal of this study was to characterize the xylanase (xynA) gene from Pichia stipitis NRRL Y-11543. METHODS AND RESULTS: The xylanase gene was cloned into pUC19 in Escherichia coli DH5alphaF' and selected by growth on RBB-xylan. All functional clones contained a recombinant plasmid with an insert of 2.4 kbp, as determined by restriction mapping. The nucleotide sequence of the P. stipitis xylanase gene consisted of 1146 bp and encoded a protein of 381 amino acids with a molecular weight of 43 649 Da. The sequence contained a putative 20-amino acid N-terminal signal sequence and four N-linked glycosylation sites. The Km values for non-glycosylated and glycosylated xylanases were 1.4 mg ml-1 and 4.2 mg ml-1, respectively, and Vmax values were 0.8 and 0.082 micromol min-1 mg-1 protein, respectively. CONCLUSION: Xylanase, a rarely found enzyme in yeast species, has been characterized in detail. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study can be used to develop better xylanase-utilizing yeast strains.  相似文献   

12.
13.
Extragenic temperature-resistant suppressor mutants of an rpoD800 derivative of Escherichia coli W3110 were selected at 43.5 degrees C. Two of the mutants were shown to have a phenotype of enhanced accumulation of heterologous proteins. Genetic mapping of the two mutants showed that the mutation conferring temperature resistance resided in the rpoH gene. P1-mediated transduction of the rpoD+ gene into both of the rpoD800 rpoH double mutants resulted in viable rpoH mutants, MON102 and MON105, that retained temperature resistance at 46 degrees C, the maximum growth temperature of W3110. The complete rpoH gene, including the regulatory region, from MON102, MON105, and the parental W3110 was cloned and sequenced. Sequencing results showed that a single C----T transition at nucleotide 802 was present in both MON102 and MON105, resulting in an Arg(CGC)----Cys(TGC) substitution at amino acid residue 268 (R-268-C; this gene was designated rpoH358). Heterologous protein accumulation levels in both MON102 and MON105, as well as in rpoH358 mutants constructed in previously unmanipulated W3110 and JM101, were assessed and compared with parental W3110 and JM101 levels. Expression studies utilizing the recA or araBAD promoter and the phage T7 gene 10L ribosome-binding site (g10L) showed that increased accumulation levels of a number of representative heterologous proteins (i.e., human or bovine insulin-like growth factor-1, bovine insulin-like growth factor-2, prohormone of human atrial natriuretic factor, bovine placental lactogen, and/or bovine prolactin) were obtained in the rpoH358 mutants compared with the levels in the parental W3110 and JM101. The mechanism of enhanced heterologous protein accumulation in MON102 and MON105 was unique compared with those of previously described rpoH mutants. Pulse-chase and Northern (RNA) blot analyses showed that the enhanced accumulation of heterologous proteins was not due to decreased proteolysis but was instead due to increased levels of the respective heterologous mRNAs accompanied by increased synthesis of the respective heterologous proteins. The plasmid copy number remained unaltered.  相似文献   

14.
Extragenic temperature-resistant suppressor mutants of an rpoD800 derivative of Escherichia coli W3110 were selected at 43.5 degrees C. Two of the mutants were shown to have a phenotype of enhanced accumulation of heterologous proteins. Genetic mapping of the two mutants showed that the mutation conferring temperature resistance resided in the rpoH gene. P1-mediated transduction of the rpoD+ gene into both of the rpoD800 rpoH double mutants resulted in viable rpoH mutants, MON102 and MON105, that retained temperature resistance at 46 degrees C, the maximum growth temperature of W3110. The complete rpoH gene, including the regulatory region, from MON102, MON105, and the parental W3110 was cloned and sequenced. Sequencing results showed that a single C----T transition at nucleotide 802 was present in both MON102 and MON105, resulting in an Arg(CGC)----Cys(TGC) substitution at amino acid residue 268 (R-268-C; this gene was designated rpoH358). Heterologous protein accumulation levels in both MON102 and MON105, as well as in rpoH358 mutants constructed in previously unmanipulated W3110 and JM101, were assessed and compared with parental W3110 and JM101 levels. Expression studies utilizing the recA or araBAD promoter and the phage T7 gene 10L ribosome-binding site (g10L) showed that increased accumulation levels of a number of representative heterologous proteins (i.e., human or bovine insulin-like growth factor-1, bovine insulin-like growth factor-2, prohormone of human atrial natriuretic factor, bovine placental lactogen, and/or bovine prolactin) were obtained in the rpoH358 mutants compared with the levels in the parental W3110 and JM101. The mechanism of enhanced heterologous protein accumulation in MON102 and MON105 was unique compared with those of previously described rpoH mutants. Pulse-chase and Northern (RNA) blot analyses showed that the enhanced accumulation of heterologous proteins was not due to decreased proteolysis but was instead due to increased levels of the respective heterologous mRNAs accompanied by increased synthesis of the respective heterologous proteins. The plasmid copy number remained unaltered.  相似文献   

15.
Maturation of the [NiFe] hydrogenases   总被引:14,自引:0,他引:14  
  相似文献   

16.
该文介绍了绿藻[FeFe]氢化酶的研究现状,包括酶的结构、催化中心、金属簇的性质,以及对氧的敏感性和可能的解决办法。并且对已报道的绿藻[FeFe]氢化酶基因及其调控等问题作了介绍。  相似文献   

17.
Anthocyanins are red, purple, or blue plant water-soluble pigments. In the past two decades, anthocyanins have received extensive studies for their anti-oxidative, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, and cardioprotective properties. In the present study, anthocyanin biosynthetic enzymes from different plant species were characterized and employed for pathway construction leading from inexpensive precursors such as flavanones and flavan-3-ols to anthocyanins in Escherichia coli. The recombinant E. coli cells successfully achieved milligram level production of two anthocyanins, pelargonidin 3-O-glucoside (0.98 mg/L) and cyanidin 3-O-gluside (2.07 mg/L) from their respective flavanone precursors naringenin and eriodictyol. Cyanidin 3-O-glucoside was produced at even higher yields (16.1 mg/L) from its flavan-3-ol, (+)-catechin precursor. Further studies demonstrated that availability of the glucosyl donor, UDP-glucose, was the key metabolic limitation, while product instability at normal pH was also identified as a barrier for production improvement. Therefore, various optimization strategies were employed for enhancing the homogenous synthesis of UDP-glucose in the host cells while at the same time stabilizing the final anthocyanin product. Such optimizations included culture medium pH adjustment, the creation of fusion proteins and the rational manipulation of E. coli metabolic network for improving the intracellular UDP-glucose metabolic pool. As a result, production of pelargonidin 3-O-glucoside at 78.9 mg/L and cyanidin 3-O-glucoside at 70.7 mg/L was achieved from their precursor flavan-3-ols without supplementation with extracellular UDP-glucose. These results demonstrate the efficient production of the core anthocyanins for the first time and open the possibility for their commercialization for pharmaceutical and nutraceutical applications.  相似文献   

18.
Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-Ia RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Ct R2, two different Mn(IV)Fe(III) site configurations were assigned either L(4)Mn(IV)(μO)(2)Fe(III)L(4) (metal-metal distance of ~2.75?, L = ligand) prevailing in metal-grown R2, or L(4)Mn(IV)(μO)(μOH)Fe(III)L(4) (~2.90?) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (~2.55?) with a L(4)Fe(IV)(μO)(2)Fe(III)L(3) core structure. Several Mn,Fe(III)Fe(III) (~2.9-3.1?) and Mn,Fe(III)Fe(II) species (~3.3-3.4?) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit R1. In Ct R2, the protonation of a bridging oxide in the Mn(IV)(μO)(μOH)Fe(III) core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.  相似文献   

19.
Automation and miniaturization are key issues of high-throughput research projects in the post-genomic era. The implementation of robotics and parallelization has enabled researchers to process large numbers of protein targets for structural studies in a short time with reasonable cost efficiency. However, the cost of implementing the robotics and parallelization often prohibit their use in the traditional academic laboratory. Fortunately, multiple groups have made significant efforts to minimize the cost of heterologous protein expression for the production of protein samples in quantities suitable for high resolution structural studies. In this review, we describe recent efforts to continue to minimize the cost for the parallel processing of multiple protein targets and focus on those materials and strategies that are highly suitable for the traditional academic laboratory.  相似文献   

20.
Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号