首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为评价蛋白质负染方法在蛋白质组学分析中的应用,采用负染和考马斯亮蓝染色两种方法对同一样品的双向电泳胶进行染色,取相对应的8对蛋白点,并进行胶内酶解及MALDI-TOF/TOF分析,比较两种方法与质谱的兼容性。图像分析显示,负染方法展示出的蛋白点更多,但三维峰图不如考染明晰;质谱结果显示,8个负染蛋白点中有7个鉴定结果有效,8个考染蛋白点鉴定结果均有效。因此可以得出以下结论:负染的灵敏度高于考染,与质谱的兼容性良好,适用于建立双向电泳参考图谱的研究;但负染后的胶图不适于进行蛋白点丰度对比分析。  相似文献   

2.
Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption. Proteomic studies in legumes have increased significantly in the last years but few studies have been performed to date in P. vulgaris. We report here a proteomic analysis of bean seeds by two-dimensional electrophoresis (2-DE). Three different protein extraction methods (TCA-acetone, phenol and the commercial clean-up kit) were used taking into account that the extractome can have a determinant impact on the level of quality of downstream protein separation and identification. To demonstrate the quality of the 2-DE analysis, a selection of 50 gel spots was used in protein identification by mass spectrometry (MALDI-TOF MS and MALDI-TOF/TOF). The results showed that a considerable proportion of spots (70%) were identified in spite of incomplete genome/protein databases for bean and other legume species. Most identified proteins corresponded to storage protein, carbohydrate metabolism, defense and stress response, including proteins highly abundant in the seed of P. vulgaris such as the phaseolin, the phytohemagglutinin and the lectin-related α-amylase inhibitor.  相似文献   

3.
Proteomic profiles of the lamina of Ecklonia kurome Okamura, one of the Japanese dominant laminarialean kelps, were investigated by two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF. Due to the absence of E. kurome DNA or protein databases, homology-based cross-species protein identification was performed using a combination of three database-searching algorithms, Mascot peptide mass fingerprinting, Mascot MS/MS ion search, and mass spectrometry-based BLAST. Proteins were extracted from the lamina by an ethanol/phenol method and subjected to 2-DE (pI 4–7, 10 % polyacrylamide gel). More than 700 spots were detected in the 2-DE gel with CBB, and 93 spots (24 proteins) were successfully identified by MALDI-TOF/TOF and the cross-species database searching. The identified proteins mainly consisted of cytoplasmic carbohydrate metabolic enzymes, chloroplast proteins involved in photosynthesis, and haloperoxidases. Interestingly, vanadium-dependent bromoperoxidases (vBPO), which is thought to be involved in halogen uptake, synthesis of halogenated products, and detoxification of reactive oxygen species, were separated into at least 23 different spots. By comparing mass spectra, amino acid sequences predicted from tandem mass spectra and haloperoxidase activities of the vBPOs, we found that (1) at least two types of vBPOs were expressed in the lamina of E. kurome and (2) two pro-vBPOs might be activated by specific cleavage at N- and C-terminal regions.  相似文献   

4.
This paper presents an analysis of Holm oak pollen proteome, together with an evaluation of the potentiality that a proteomic approach may have in the provenance variability assessment. Proteins were extracted from pollen of four Holm oak provenances, and they were analyzed by gel-based (1- and 2-DE in combination with MALDI-TOF/TOF) and gel-free (nLC-LTQ Orbitrap MS) approaches. A comparison of 1- and 2-DE protein profiles of the four provenances revealed significant differences, both qualitative and quantitative, in abundance (18 bands and 16 spots, respectively). Multivariate statistical analysis carried out on bands and spots clearly showed distinct associations between provenances, which highlight their geographical origins. A total of 100 spots selected from the 402 spots observed on 2-DE gels were identified by MALDI-TOF/TOF. Moreover, a complementary gel-free shotgun approach was performed by nLC-LTQ Orbitrap MS. The identified proteins were classified according to biological processes, and most proteins in both approaches were related to metabolism and defense/stress processes. The nLC-LTQ Orbitrap MS analysis allowed us the identification of proteins belonging to the cell wall and division, transport and translation categories. Besides providing the first reference map of Holm oak pollen, our results confirm previous studies based on morphological observations and acorn proteomic analysis. Moreover, our data support the valuable use of proteomic techniques as phylogenetic tool in plant studies.  相似文献   

5.
A small amount of bioptic tissue ( approximately 5-10mg of fresh tissue) usually does not contain enough material to extract protein and RNA separately, to obtain preparative two-dimensional polyacrylamide gel electrophoresis (2-DE), and to identify a large number of separated proteins by MS. We tested a method, on small renal cancer specimens, for the coextraction of protein and RNA coupled with 2-DE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) or quadrupole time-of-flight (Q-TOF) analysis. We coextracted 0.28+/-0.05mg of proteins and 2.5+/-0.33microg of RNA for each 10mg of renal carcinoma tissue. Small and large 2-DE gels were compared: they showed a similar number of spots, and it was possible to match each other; using small format gels, one-fifth of the protein amount was required to identify, by Q-TOF analysis, the same number of proteins identifiable in large-format gel using MALDI-TOF analysis. Quality of RNA coextracted with the proteins was tested by real-time PCR on a set of housekeeping genes. They were quantified with high amplification efficiency and specificity. In conclusion, using 5 to 10mg of fresh tissue, it was possible to perform comprehensive parallel proteomic and genomic analysis by high-resolution, small-format 2-DE gels, allowing approximately 300 proteins identification and 1000 genes expression analysis.  相似文献   

6.
The ability of two-dimensional gel electrophoresis (2-DE) to separate glycoproteins was exploited to separate distinct glycoforms of kappa-casein that differed only in the number of O-glycans that were attached. To determine where the glycans were attached, the individual glycoforms were digested in-gel with pepsin and the released glycopeptides were identified from characteristic sugar ions in the tandem mass spectrometry (MS) spectra. The O-glycosylation sites were identified by tandem MS after replacement of the glycans with ammonia / aminoethanethiol. The results showed that glycans were not randomly distributed among the five potential glycosylation sites in kappa-casein. Rather, glycosylation of the monoglycoform could only be detected at a single site, T152. Similarly the diglycoform appeared to be modified exclusively at T152 and T163, while the triglycoform was modified at T152, T163 and T154. While low levels of glycosylation at other sites cannot be excluded the hierarchy of site occupation between glycoforms was clearly evident and argues for an ordered addition of glycans to the protein. Since all five potential O-glycosylation sites can be glycosylated in vivo, it would appear that certain sites remain latent until other sites are occupied. The determination of glycosylation site occupancy in individual glycoforms separated by 2-DE revealed a distinct pattern of in vivo glycosylation that has not been recognized previously.  相似文献   

7.
Botrytis cinerea is a phytopathogenic fungus causing disease in a substantial number of economically important crops. In an attempt to identify putative fungal virulence factors, the two-dimensional gel electrophoresis (2-DE) protein profile from two B. cinerea strains differing in virulence and toxin production were compared. Protein extracts from fungal mycelium obtained by tissue homogenization were analyzed. The mycelial 2-DE protein profile revealed the existence of qualitative and quantitative differences between the analyzed strains. The lack of genomic data from B. cinerea required the use of peptide fragmentation data from MALDI-TOF/TOF and ESI ion trap for protein identification, resulting in the identification of 27 protein spots. A significant number of spots were identified as malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The different expression patterns revealed by some of the identified proteins could be ascribed to differences in virulence between strains. Our results indicate that proteomic analysis are becoming an important tool to be used as a starting point for identifying new pathogenicity factors, therapeutic targets and for basic research on this plant pathogen in the postgenomic era.  相似文献   

8.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

9.
Characterization of metaproteomics in crop rhizospheric soil   总被引:2,自引:0,他引:2  
Soil rhizospheric metaproteomics is a powerful scientific tool to uncover the interactions between plants and microorganisms in the soil ecosystem. The present study established an extraction method suitable for different soils that could increase the extracted protein content. Close to 1000 separate spots with high reproducibility could be identified in the stained 2-DE gels. Among the spots, 189 spots representing 122 proteins on a 2-DE gel of rice soil samples were successfully identified by MALDI-TOF/TOF-MS. These proteins mainly originated from rice and microorganisms. They were involved in protein, energy, nucleotide, and secondary metabolisms, as well as signal transduction and resistance. Three characteristics of the crop rhizospheric metaproteomics seemed apparent: (1) approximately one-third of the protein spots could not be identified by MALDI-TOF/TOF/MS, (2) the conservative proteins from plants formed a feature distribution of crop rhizospheric metaproteome, and (3) there were very complex interactions between plants and microorganisms existing in a crop rhizospheric soil. Further functional analysis on the identified proteins unveiled various metabolic pathways and signal transductions involved in the soil biotic community. This study provides a paradigm for metaproteomic research on soil biology.  相似文献   

10.
Glycoproteins play important roles in various biological processes including intracellular transport, cell recognition, and cell-cell interactions. The change of the cellular glycosylation profile may have profound effects on cellular homeostasis and malignancy. Therefore, we have developed a sensitive screening approach for the comprehensive analysis of N-glycans and glycosylation sites on human serum proteins. Using this approach, N-linked glycopeptides were extracted by double lectin affinity chromatography. The glycans were enzymatically cleaved from the peptides and then profiled using capillary hydrophilic interaction liquid chromatography coupled online with ESI-TOF MS. The structures of the separated glycans were determined by MALDI quadrupole ion-trap TOF mass spectrometry in both positive and negative modes. The glycosylation sites were elucidated by sequencing of PNGase F modified glycopeptides using nanoRP-LC-ESI-MS/MS. Alterations of glycosylation were analyzed by comparing oligosaccharide expression of serum glycoproteins at different disease stages. The efficiency of this method was demonstrated by the analysis of pancreatic cancer serum compared to normal serum. Ninety-two individual glycosylation sites and 202 glycan peaks with 105 unique carbohydrate structures were identified from approximately 25 mug glycopeptides. Forty-four oligosaccharides were found to be distinct in the pancreatic cancer serum. Increased branching of N-linked oligosaccharides and increased fucosylation and sialylation were observed in samples from patients with pancreatic cancer. The methodology described in this study may elucidate novel, cancer-specific oligosaccharides and glycosylation sites, some of which may have utility as useful biomarkers of cancer.  相似文献   

11.
To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.  相似文献   

12.
Two-dimensional gel electrophoresis (2-DE) image analysis is conventionally used for comparative proteomics. However, there are a number of technical difficulties associated with 2-DE protein separation that limit the depth of proteome coverage, and the image analysis steps are typically labor-intensive and low-throughput. Recently, mass spectrometry-based quantitation strategies have been described as alternative differential proteome analysis techniques. In this study, we investigated changes in protein expression using an ovarian cancer cell line, OVMZ6, 24 h post-stimulation with the relatively weak agonist, urokinase-type plasminogen activator (uPA). Quantitative protein profiles were obtained by MALDI-TOF/TOF from stable isotope-labeled cells in culture (SILAC), and these results were compared to the quantitative ratios obtained using 2-DE gel image analysis. MALDI-TOF/TOF mass spectrometry showed that differential quantitation using SILAC was highly reproducible (approximately 8% coefficient of variation (CV)), and this variance was considerably lower than that achieved using automated 2-DE image analysis strategies (CV approximately 25%). Both techniques revealed subtle alterations in cellular protein expression following uPA stimulation. However, due to the lower variances associated with the SILAC technique, smaller changes in expression of uPA-inducible proteins could be found with greater certainty.  相似文献   

13.
Chen W  Ji J  Zhao R  Ru B 《Neurochemical research》2002,27(9):871-881
Human brain proteins were isolated from left and right temporal cortex lobes at the age of 73, 23, 84 years and separated by two-dimensional gel electrophoresis (2-DE). 2-DE was carried out with an immobilized pH gradient strip in the first dimension and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Over 800 polypeptide spots were resolved with a silver-staining protocol by computerized 2-D gel analsis. Seven of the polypeptide spots were evidently distinguishable between human left and right temporal lobes. Four of the polypeptide spots were larger and three were smaller in human right temporal lobe. One of these three protein spots that have descendent expression in human right temporal lobe was identified as carbonyl reductase (NADPH) 1 by MALDI-TOF MS. Thirty-three common spots were identified by ESI-MS/MALDI-TOF MS/Edman sequencing and a protein database search. These identified proteins include some important enzymes and regulating proteins.  相似文献   

14.
Drosophila melanogaster larval hemolymph protein mapping   总被引:5,自引:0,他引:5  
With the completion of the genome sequence of Drosophila melanogaster the importance of constructing a proteome map is to be considered. Therefore, with the application of recent advances in proteomic analysis approaches, a protein map of D. melanogaster larvae hemolymph proteins was obtained using 2-DE in the range of pH 3-10. After Coomassie colloidal detection of 289 spots, a total of 105 were excised from the gel and digested with trypsin. Identification was done based on a combination of MALDI-TOF/TOF MS and MS/MS spectra. The 99 proteins identified using this approach include a large number of metabolic enzymes, translational apparatus components, and structural proteins. Among these we emphasize the identification of proteins with molecular chaperone properties (heat shock proteins and PPIases) and protein spots involved in defense responses such as antioxidant and immunological defense mechanisms (thioredoxin, prophenoloxidase, and serine proteases), as well as in signal transduction pathways.  相似文献   

15.
Extensive site-specific glycosylation analysis of individual glycoproteins is difficult due to the nature and complexity of glycosylation in proteins. In protein mixtures, these analyses are even more difficult. We present an approach combining nonspecific protease digestion, nanoflow liquid chromatography, and tandem mass spectrometry (MS/MS) aimed at comprehensive site-specific glycosylation analysis in protein mixtures. The strategy described herein involves the analysis of a complex mixture of glycopeptides generated from immobilized-Pronase digestion of a cocktail of glycoproteins consisting of bovine lactoferrin, kappa casein, and bovine fetuin using nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (nano-LC-Q-TOF MS). The resulting glycopeptides were chromatographically separated on a micro fluidic chip packed with porous graphitized carbon and analyzed via MS and MS/MS analyses. In all, 233 glycopeptides (identified based on composition and including isomers) corresponding to 18 glycosites were observed and determined in a single mixture. The glycopeptides were a mixture of N-linked glycopeptides (containing high mannose, complex and hybrid glycans) and O-linked glycopeptides (mostly sialylated). Results from this study were comprehensive as detailed glycan microheterogeneity information was obtained. This approach presents a platform to simultaneously characterize N- and O-glycosites in the same mixture with extensive site heterogeneity.  相似文献   

16.
基于质谱和生物信息学分析的小菜蛾蛋白质鉴定   总被引:1,自引:0,他引:1  
谢苗  成娟  尤民生  杨广  蔡敬轩 《昆虫学报》2009,52(11):1206-1212
本研究以非模式昆虫小菜蛾Plutella xylostella为材料, 对比2, 3, 4龄幼虫的蛋白质组双向电泳图谱, 得到24个蛋白质差异点, 从中选取了编号为1111的差异表达蛋白质点进行质谱鉴定和生物信息学分析. 采用胶内酶解的多肽进行MALDI-TOF/TOF分析, 获得该点的肽质量指纹图谱(PMF)及串联质谱(MS/MS)图谱。将获得的PMF分别用MASCOT和ProFound等常用软件在NCBInr的Metazoa蛋白质数据库进行搜索, 匹配结果不理想. 进一步用PMF+MS/MS谱图搜索NCBInr的Metazoa蛋白质数据库, 以及小菜蛾EST数据库。 在NCBInr库中匹配结果为拟暗果蝇Drosophila pseudoobscura中的一种假定蛋白GA18218-PA, 而用EST库搜索的结果为家蚕Bombyx mori的ATP合酶的亚基。为验证搜索结果, 将该蛋白质点进行磺基异硫氰酸苯酯(SPITC)化学衍生后de novo测序, 最后确认该点可能为ATP合酶的一个亚基。最后着重讨论了蛋白质的质谱鉴定与生物信息学分析的联合使用, 希望据此选择出最适合于非模式昆虫蛋白质组学鉴定的方法。  相似文献   

17.
Cytokinin oxidase/dehydrogenase (CKO; EC 1.5.99.12) irreversibly degrades the plant hormones cytokinins. A recombinant maize isoenzyme 1 (ZmCKO1) produced in the yeast Yarrowia lipolytica was subjected to enzymatic deglycosylation by endoglycosidase H. Spectrophotometric assays showed that both activity and thermostability of the enzyme decreased after the treatment at non-denaturing conditions indicating the biological importance of ZmCKO1 glycosylation. The released N-glycans were purified with graphitized carbon sorbent and analyzed by MALDI-TOF MS. The structure of the measured high-mannose type N-glycans was confirmed by tandem mass spectrometry (MS/MS) on a Q-TOF instrument with electrospray ionization. Further experiments were focused on direct analysis of sugar binding. Peptides and glycopeptides purified from tryptic digests of recombinant ZmCKO1 were separated by reversed-phase chromatography using a manual microgradient device; the latter were then subjected to offline-coupled analysis on a MALDI-TOF/TOF instrument. Glycopeptide sequencing by MALDI-TOF/TOF MS/MS demonstrated N-glycosylation at Asn52, 63, 134, 294, 323 and 338. The bound glycans contained 3-14 mannose residues. Interestingly, Asn134 was found only partially glycosylated. Asn338 was the sole site to carry large glycan chains exceeding 25 mannose residues. This observation demonstrates that contrary to a previous belief, the heterologous expression in Y. lipolytica may lead to locally hyperglycosylated proteins.  相似文献   

18.
As a global approach to gain a better understanding of the mechanisms involved in pea resistance to Erysiphe pisi, changes in the leaf proteome of two pea genotypes differing in their resistance phenotype were analyzed by a combination of 2-DE and MALDI-TOF/TOF MS. Leaf proteins from control non-inoculated and inoculated susceptible (Messire) and resistant (JI2480) plants were resolved by 2-DE, with IEF in the 5-8 pH range and SDS-PAGE on 12% gels. CBB-stained gels revealed the existence of quantitative and qualitative differences between extracts from: (i) non-inoculated leaves of both genotypes (77 spots); (ii) inoculated and non-inoculated Messire leaves (19 spots); and (iii) inoculated and non-inoculated JI2480 leaves (12 spots). Some of the differential spots have been identified, after MALDI-TOF/TOF analysis and database searching, as proteins belonging to several functional categories, including photosynthesis and carbon metabolism, energy production, stress and defense, protein synthesis and degradation and signal transduction. Results are discussed in terms of constitutive and induced elements involved in pea resistance against Erysiphe pisi.  相似文献   

19.
Yao R  Li J 《Proteomics》2003,3(10):2036-2043
This study describes the separation and identification of chorion proteins through two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) techniques. Due to their high hydrophobicity, chorion proteins are difficult to be solubilized and absorbed into the immobilized pH gradient strip for isoelectric focusing. By optimizing the applied conditions for chorion protein extraction and sample application, we were able to solubilize the majority of the chorion proteins and resolve them by 2-DE. Under optimized conditions, there are more than 700 protein spots resolved by 2-D analysis. Trypsin digestions of individual protein spots, MALDI-TOF MS analysis of their digested peptides, and subsequent BLAST search of peptide masses resulted in the tentative identification of 38 protein spots. Our data show that sequential extraction of the isolated chorion, 2-DE of the solubilized chorion proteins, in-gel digestion of the resolved protein and MALDI-TOF MS analysis of the protein digests is an effective overall strategy towards determination of chorion proteins in mosquitoes. The merits of the method described for the determination of mosquito chorion proteins and its feasibility for the separation and identification of membrane proteins and chorion or eggshell proteins from other insect species are discussed.  相似文献   

20.
The triatomine bugs are obligatory haematophagous organisms that act as vectors of Chagas disease by transmitting the protozoan Trypanosoma cruzi. Their feeding success is strongly related to salivary proteins that allow these insects to access blood by counteracting host haemostatic mechanisms. Proteomic studies were performed on saliva from the Amazonian triatomine bugs: Rhodnius brethesi and R. robustus, species epidemiologically relevant in the transmission of T. cruzi. Initially, salivary proteins were separated by two-dimensional gel electrophoresis (2-DE). The average number of spots of the R. brethesi and R. robustus saliva samples were 129 and 135, respectively. The 2-DE profiles were very similar between the two species. Identification of spots by peptide mass fingerprinting afforded limited efficiency, since very few species-specific salivary protein sequences are available in public sequence databases. Therefore, peptide fragmentation and de novo sequencing using a MALDI-TOF/TOF mass spectrometer were applied for similarity-driven identifications which generated very positive results. The data revealed mainly lipocalin-like proteins which promote blood feeding of these insects. The redundancy of saliva sequence identification suggested multiple isoforms caused by gene duplication followed by gene modification and/or post-translational modifications. In the first experimental assay, these proteins were predominantly phosphorylated, suggesting functional phosphoregulation of the lipocalins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号