首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter nucleosome positioning, the higher mobility of sin mutant nucleosomes provides a means by which sin mutations may substitute for SWI/SNF function. The location of sin mutations also provides a new opportunity for insights into the mechanism for nucleosome mobilisation. We find that both mutations altering histone DNA contacts at the nucleosome dyad and mutations in the dimer-tetramer interface influence nucleosome mobility. Furthermore, incorporation of H2A.Z into nucleosomes, which also alters dimer-tetramer interactions, affects nucleosome mobility. Thus, variation of histone sequence or subtype provides a means by which eukaryotes may regulate access to chromatin through alterations to nucleosome mobility.  相似文献   

2.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

3.
4.
5.
Interactions of the yeast chromatin-remodeling complexes SWI/SNF and RSC with nucleosomes were probed using site-specific DNA photoaffinity labeling. 5 S rDNA was engineered with photoreactive nucleotides incorporated at different sites in DNA to scan for the subunits of SWI/SNF in close proximity to DNA when SWI/SNF is bound to the 5 S nucleosome or to the free 5 S rDNA. The Swi2/Snf2 and Snf6 subunits of SWI/SNF were efficiently cross-linked at several positions in the nucleosome, whereas only Snf6 was efficiently cross-linked when SWI/SNF was bound to free DNA. DNA photoaffinity labeling of RSC showed that the Rsc4 subunit is in close proximity to nucleosomal DNA and not when RSC is bound to free DNA. After remodeling, the Swi2/Snf2 and Rsc4 subunits are no longer detected near the nucleosomal DNA and are evidently displaced from the surface of the nucleosome, indicating significant changes in SWI/SNF and RSC contacts with DNA after remodeling.  相似文献   

6.
7.
To understand the mechanisms by which the chromatin-remodeling SWI/SNF complex interacts with DNA and alters nucleosome organization, we have imaged the SWI/SNF complex with both naked DNA and nucleosomal arrays by using energy-filtered microscopy. By making ATP-independent contacts with DNA at multiple sites on its surface, SWI/SNF creates loops, bringing otherwise-distant sites into close proximity. In the presence of ATP, SWI/SNF action leads to the disruption of nucleosomes within domains that appear to be topologically constrained by the complex. The data indicate that the action of one SWI/SNF complex on an array of nucleosomes can lead to the formation of a region where multiple nucleosomes are disrupted. Importantly, nucleosome disruption by SWI/SNF results in a loss of DNA content from the nucleosomes. This indicates a mechanism by which SWI/SNF unwraps part of the nucleosomal DNA.  相似文献   

8.
Hassan AH  Neely KE  Workman JL 《Cell》2001,104(6):817-827
  相似文献   

9.
10.
11.
ATP-dependent chromatin remodeling complexes enable rapid rearrangements in chromatin structure in response to developmental cues. The ATPase subunits of remodeling complexes share homology with the helicase motifs of DExx box helicases. Recent single-molecule experiments indicate that, like helicases, many of these complexes use ATP to translocate on DNA. Despite sharing this fundamental property, two key classes of remodeling complexes, the ISWI class and the SWI/SNF class, generate distinct remodeled products. SWI/SNF complexes generate nucleosomes with altered positions, nucleosomes with DNA loops and nucleosomes that are capable of exchanging histone dimers or octamers. In contrast, ISWI complexes generate nucleosomes with altered positions but in standard structures. Here, we draw analogies to monomeric and dimeric helicases and propose that ISWI and SWI/SNF complexes catalyze different outcomes in part because some ISWI complexes function as dimers while SWI/SNF complexes function as monomers.  相似文献   

12.
Fan HY  He X  Kingston RE  Narlikar GJ 《Molecular cell》2003,11(5):1311-1322
One hallmark of ATP-dependent remodeling complexes is the ability to make nucleosomal DNA accessible to regulatory factors. We have compared two prominent human ATP-dependent remodelers, BRG1 from the SWI/SNF family and SNF2h from the ISWI family, for their abilities to make a spectrum of nucleosomal sites accessible. By measuring rates of remodeling at seven different sites on a mononucleosome and at six different sites on the central nucleosome of a trinucleosome, we have found that BRG1 opens centrally located sites more than an order of magnitude better than SNF2h. We provide evidence that this capability of BRG1 is caused by its ability to create DNA loops on the surface of a nucleosome, even when that nucleosome is constrained by adjacent nucleosomes. This specialized ability to make central sites accessible should allow SWI/SNF family complexes to facilitate binding of nuclear factors in chromatin environments where adjacent nucleosomes might otherwise constrain mobility.  相似文献   

13.
In yeast, remodeling of PHO5 promoter chromatin upon activation is accompanied by transient hyperacetylation and subsequent eviction of histones from the promoter in trans. In the course of rerepression, nucleosomes have to be reassembled on the promoter. We have analyzed where the histones for reassembly of the inactive promoter chromatin come from. The use of a strain with two differently tagged and differently regulated versions of histone H3 allowed us to discriminate between histones originating from the chromatin fraction and histones arising from the soluble histone pool. In this way, we show that the incorporated histones originate from a source in trans. Promoter closure occurs very rapidly, and the histone chaperones Asf1 and Hir1 as well as the SWI/SNF nucleosome remodeling complex appear to be important for rapid reassembly of nucleosomes at the PHO5 promoter.  相似文献   

14.
Chromatin-remodeling enzymes can overcome strong histone-DNA interactions within the nucleosome to regulate access of DNA-binding factors to the genetic code. By unzipping individual DNA duplexes, each containing a uniquely positioned nucleosome flanked by long segments of DNA, we directly probed histone-DNA interactions. The resulting disruption-force signatures were characteristic of the types and locations of interactions and allowed measurement of the positions of nucleosomes with 2.6-base-pair (bp) precision. Nucleosomes remodeled by yeast SWI/SNF were moved bidirectionally along the DNA, resulting in a continuous position distribution. The characteristic distance of motion was approximately 28 bp per remodeling event, and each event occurred with a catalytic efficiency of 0.4 min(-1) per nM SWI/SNF. Remodeled nucleosomes had essentially identical disruption signatures to those of unremodeled nucleosomes, indicating that their overall structure remained canonical. These results impose substantial constraints on the mechanism of SWI/SNF remodeling.  相似文献   

15.
16.
Chromatin remodeling enzymes use the energy of ATP hydrolysis to alter histone–DNA contacts and regulate DNA-based processes in eukaryotes. Whether different subfamilies of remodeling complexes generate distinct products remains uncertain. We have developed a protocol to analyze nucleosome remodeling on individual products formed in vitro. We used a DNA methyltransferase to examine DNA accessibility throughout nucleosomes that had been remodeled by the ISWI and SWI/SNF families of enzymes. We confirmed that ISWI-family enzymes mainly created patterns of accessibility consistent with canonical nucleosomes. In contrast, SWI/SNF-family enzymes generated widespread DNA accessibility. The protection patterns created by these enzymes were usually located at the extreme ends of the DNA and showed no evidence for stable loop formation on individual molecules. Instead, SWI/SNF family proteins created extensive accessibility by generating heterogeneous products that had fewer histone–DNA contacts than a canonical nucleosome, consistent with models in which a canonical histone octamer has been ‘pushed’ off of the end of the DNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号