首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood.

Results

We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions.

Conclusions

The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.  相似文献   

3.
The activation of eukaryotic DNA replication origins needs to be strictly controlled at multiple steps in order to faithfully duplicate the genome and to maintain its stability. How the checkpoint recovery and adaptation protein Polo-like kinase 1 (Plk1) regulates the firing of replication origins during non-challenged S phase remained an open question. Using DNA fiber analysis, we show that immunodepletion of Plk1 in the Xenopus in vitro system decreases replication fork density and initiation frequency. Numerical analyses suggest that Plk1 reduces the overall probability and synchrony of origin firing. We used quantitative chromatin proteomics and co-immunoprecipitations to demonstrate that Plk1 interacts with firing factors MTBP/Treslin/TopBP1 as well as with Rif1, a known regulator of replication timing. Phosphopeptide analysis by LC/MS/MS shows that the C-terminal domain of Rif1, which is necessary for its repressive action on origins through protein phosphatase 1 (PP1), can be phosphorylated in vitro by Plk1 on S2058 in its PP1 binding site. The phosphomimetic S2058D mutant interrupts the Rif1-PP1 interaction and modulates DNA replication. Collectively, our study provides molecular insights into how Plk1 regulates the spatio-temporal replication program and suggests that Plk1 controls origin activation at the level of large chromatin domains in vertebrates.  相似文献   

4.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep, that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3–H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53''s functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53Δ mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins and growth of this mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a “nucleosome buffer”, interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.Key words: DNA replication, Rad53, histones, checkpoint, origins of replication  相似文献   

5.
Mcm1 binds replication origins   总被引:8,自引:0,他引:8  
  相似文献   

6.
Replication origin licensing builds a fundamental basis for DNA replication in all eukaryotes. This occurs during the late M to early G1 phases in which chromatin is licensed by loading of the MCM2-7 complex, an essential component of the replicative helicase. In the following S phase, only a minor fraction of chromatin-bound MCM2-7 complexes are activated to unwind the DNA. Therefore, it is proposed that the vast majority of MCM2-7 complexes license dormant origins that can be used as backups. Consistent with this idea, it has been repeatedly demonstrated that a reduction (~60%) in chromatin-bound MCM2-7 complexes has little effect on the density of active origins. In this study, however, we describe the first exception to this observation. A reduction of licensed origins due to Mcm4 chaos3 homozygosity reduces active origin density in primary embryonic fibroblasts (MEFs) in a C57BL/6J (B6) background. We found that this is associated with an intrinsically lower level of active origins in this background compared to others. B6 Mcm4 chaos3/chaos3 cells proliferate slowly due to p53-dependent upregulation of p21. In fact, the development of B6 Mcm4 chaos3/chaos3 mice is impaired and a significant fraction of them die at birth. While inactivation of p53 restores proliferation in B6 Mcm4 chaos3/chaos3 MEFs, it paradoxically does not rescue animal lethality. These findings indicate that a reduction of licensed origins may cause a more profound effect on cell types with lower densities of active origins. Moreover, p53 is required for the development of mice that suffer from intrinsic replication stress.  相似文献   

7.
8.
We have developed a genomic footprinting protocol which allows us to examine protein-DNA interactions at single copy chromosomal origins of DNA replication in the budding yeast Saccharomyces cerevisiae. We show that active replication origins oscillate between two chromatin states during the cell cycle: an origin recognition complex (ORC)-dependent post-replicative state and a Cdc6p-dependent pre-replicative state. Furthermore, we show that both post- and pre-replicative complexes can form efficiently on closely apposed replicators. Surprisingly, ARS301 which is active as an origin on plasmids but not in its normal chromosomal location, forms ORC- and Cdc6p-dependent complexes in both its active and inactive contexts. Thus, although ORC and Cdc6p are essential for initiation, their binding is not sufficient to dictate origin use.  相似文献   

9.
During late mitosis and early G1, a series of proteins are assembled onto replication origins, resulting in them becoming ‘licensed’ for replication in the subsequent S phase. Four factors have so far been identified that are required for chromatin to become functionally licensed: ORC (the origin recognition complex) and Cdc6, plus the two components of the replication licensing system RLF-M and RLF-B. Here we describe the first steps of a systematic fractionation of Xenopus egg extracts to identify all the components necessary for the assembly of licensed replication origins on Xenopus sperm nuclei (the physiological DNA substrate in this system). We have purified a new activity essential for this reaction, and have shown that it is nucleoplasmin, a previously known chromatin remodelling protein. Nucleoplasmin decondenses the sperm chromatin by removing protamines, and is required at the earliest known step in origin assembly to allow ORC to bind to the DNA. Sperm nuclei can be licensed by a combination of nucleoplasmin, RLF-M and a partially purified fraction that contains ORC, Cdc6 and RLF-B. This suggests that we are likely to have identified most of the proteins required for this assembly reaction.  相似文献   

10.
DNA replication is precisely regulated in time and space, thereby safeguarding genomic integrity. In eukaryotes, replication initiates from multiple sites along the genome, termed origins of replication, and propagates bidirectionally. Dynamic origin bound complexes dictate where and when replication should initiate. During late mitosis and G1 phase, putative origins are recognized and become "licensed" through the assembly of pre-replicative complexes (pre-RCs) that include the MCM2-7 helicases. Subsequently, at the G1/S phase transition, a fraction of pre-RCs are activated giving rise to the establishment of replication forks. Origin location is influenced by chromatin and nuclear organization and origin selection exhibits stochastic features. The regulatory mechanisms that govern these cell cycle events rely on the periodic fluctuation of cyclin dependent kinase (CDK) activity through the cell cycle.  相似文献   

11.
12.
During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger‐containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1‐binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2‐7 loading, is impaired in BRPF3‐depleted cells, identifying a BRPF3‐dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3‐HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins.  相似文献   

13.
Initiation of DNA synthesis is triggered by the binding of proteins to replication origins. However, little is known about the order in which specific proteins associate with origin sites during the cell cycle. We show that in cycling cells there are at least two different nucleoprotein complexes at oriC. A factor for inversion stimulation (FIS)-bound nucleoprotein complex, present throughout the majority of the cell cycle, switches to an integration host factor (IHF)-bound form as cells initiate DNA replication. Coincident with binding of IHF, initiator DnaA binds to its previously unoccupied R3 site. In stationary phase, a third nucleoprotein complex forms. FIS is absent and inactive oriC forms a nucleoprotein structure containing IHF that is not observed in cycling cells. We propose that interplay between FIS and IHF aids assembly of initiation nucleoprotein complexes during the cell cycle and blocks initiation at inappropriate times. This exchange of components at replication origins is reminiscent of switching between pre- and post-replicative chromatin states at yeast ARS1.  相似文献   

14.
Within each cell cycle, a cell must ensure that the processes of selection of replication origins (licensing) and initiation of DNA replication are well coordinated to prevent re-initiation of DNA replication from the same DNA segment during the same cell cycle. This is achieved by restricting the licensing process to G1 phase when the prereplicative complexes (preRCs) are assembled onto the origin DNA, while DNA replication is initiated only during S phase when de novo preRC assembly is blocked. Cdt1 is an important member of the preRC complex and its tight regulation through ubiquitin-dependent proteolysis and binding to its inhibitor Geminin ensure that Cdt1 will only be present in G1 phase, preventing relicensing of replication origins. We have recently reported that Cdt1 associates with chromatin in a dynamic way and recruits its inhibitor Geminin onto chromatin in vivo. Here we discuss how these dynamic Cdt1-chromatin interactions and the local recruitment of Geminin onto origins of replication by Cdt1 may provide a tight control of the licensing process in time and in space.  相似文献   

15.
16.
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation – from selecting replication start sites to replicative helicase loading and activation – and describe how these events are often distinctly regulated across different eukaryotic model organisms.  相似文献   

17.
18.
19.
Initiation of DNA replication in eukaryotic cells is regulated through the ordered assembly of replication complexes at origins of replication. Association of Cdc45 with the origins is a crucial step in assembly of the replication machinery, hence can be considered a target for the regulation of origin activation. To examine the process required for SpCdc45 loading, we isolated fission yeast SpSld3, a counterpart of budding yeast Sld3 that interacts with Cdc45. SpSld3 associates with the replication origin during G1-S phases and this association depends on Dbf4-dependent (DDK) kinase activity. In the corresponding period, SpSld3 interacts with minichromosome maintenance (MCM) proteins and then with SpCdc45. A temperature-sensitive sld3-10 mutation suppressed by the multicopy of the sna41+ encoding SpCdc45 impairs loading of SpCdc45 onto chromatin. In addition, this mutation leads to dissociation of preloaded Cdc45 from chromatin in the hydroxyurea-arrested S phase, and DNA replication upon removal of hydroxyurea is retarded. Thus, we conclude that SpSld3 is required for stable association of Cdc45 with chromatin both in initiation and elongation of DNA replication. The DDK-dependent origin association suggests that SpSld3 is involved in temporal regulation of origin firing.  相似文献   

20.
Recent evidence points to homeotic proteins as actors in the crosstalk between development and DNA replication. The present work demonstrates that HOXC13, previously identified as a new member of human DNA replicative complexes, is a stable component of early replicating chromatin in living cells: it displays a slow nuclear dynamics due to its anchoring to the DNA minor groove via the arginine-5 residue of the homeodomain. HOXC13 binds in vivo to the lamin B2 origin in a cell-cycle-dependent manner consistent with origin function; the interaction maps with nucleotide precision within the replicative complex. HOXC13 displays in vitro affinity for other replicative complex proteins; it interacts also in vivo with the same proteins in a cell-cycle-dependent fashion. Chromatin-structure modifying treatments, disturbing origin function, reduce also HOXC13–origin interaction. The described interactions are not restricted to a single origin nor to a single homeotic protein (also HOXC10 binds the lamin B2 origin in vivo). Thus, HOX complexes probably contribute in a general, structure-dependent manner, to origin identification and assembly of replicative complexes thereon, in presence of specific chromatin configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号