首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloramphenicol and puromycin at appropriate concentrations inhibited the induction of two-dimensional growth in the gametophytes of the fern Asplenium nidus without drastically inhibiting germination and continued filamentous growth. Similar responses to actinomycin D were reported earlier. Radioautographic techniques were employed to study the pattern of ribonucleic acid and protein synthesis in gametophytes which were treated with chloramphenicol, puromycin and actinomycin D. Uptake of H3-uridine into ribonucleic acid was strongly inhibited by all three antibiotics. Chloramphenicol and puromycin were not as effective as actinomycin D in inhibiting H3-leucine incorporation. The results are discussed in relation to the quality of light and antibiotics on two-dimensional growth in the gametophytes.  相似文献   

2.
Inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics in Streptomyces spp. comprises a family of diverse phenotypes in which characteristic subsets of the macrolide-lincosamide-streptogramin antibiotics induce resistance mediated by mono- or dimethylation of adenine, or both, in 23S ribosomal ribonucleic acid. In these studies, diverse patterns of induction specificity in Streptomyces and associated ribosomal ribonucleic acid changes are described. In Streptomyces fradiae NRRL 2702 erythromycin induced resistance to vernamycin B, whereas in Streptomyces hygroscopicus IFO 12995, the reverse was found: vernamycin B induced resistance to erythromycin. In a Streptomyces viridochromogenes (NRRL 2860) model system studied in detail, tylosin induced resistance to erythromycin associated with N6-monomethylation of 23S ribosomal ribonucleic acid, whereas in Staphylococcus aureus, erythromycin induced resistance to tylosin mediated by N6-dimethylation of adenine. Inducible macrolide-lincosamide-streptogramin resistance was found in S. fradiae NRRL 2702 and S. hygroscopicus IFO 12995, which synthesize the macrolides tylosin and maridomycin, respectively, as well as in the lincosamide producer Streptomyces lincolnensis NRRL 2936 and the streptogramin type B producer Streptomyces diastaticus NRRL 2560. A wide range of different macrolides including chalcomycin, tylosin, and cirramycin induced resistance when tested in an appropriate system. Lincomycin was active as inducer in S. lincolnensis, the organism by which it is produced, and streptogramin type B antibiotics induced resistance in S. fradiae, S. hygroscopicus, and the streptogramin type B producer S. diastaticus. Patterns of adenine methylation found included (i) lincomycin-induced monomethylation in S. lincolnensis (and constitutive monomethylation in a mutant selected with maridomycin), (ii) concurrent equimolar levels of adenine mono- plus dimethylation in S. hygroscopicus, (iii) monomethylation in S. fradiae (and dimethylation in a mutant selected with erythromycin), and (iv) adenine dimethylation in S. diastaticus induced by ostreogrycin B.  相似文献   

3.
A wild-type strain of Micrococcus radiodurans and its nonpigmented mutant W(1) were tested for sensitivity to 10 antibiotics selected from the standpoint of their mechanism of action. Representatives of groups of antibiotics inhibiting deoxyribonucleic acid (DNA) synthesis, DNA-dependent ribonucleic acid synthesis, protein synthesis, and cell wall synthesis were selected. M. radiodurans and its mutant exhibited full susceptibility to all antibiotics tested (mitomycin C, actinomycin D, chloramphenicol, dihydrostreptomycin, erythromycin, neomycin, kanamycin, benzylpenicillin, bacitracin, and vancomycin), the degree of susceptibility being of the same order as that of a standard strain of Staphylococcus aureus 209 P, with the exception of dihydrostreptomycin.  相似文献   

4.
The envA mutation in Escherichia coli K-12, which maps at 1.5 min, was previously shown to mediate sensitivity to gentian violet as well as to several antibiotics. Moreover, strains containing the envA gene were recently found to be lysed by lysozyme in the absence of ethylenediaminetetraacetate. It is here reported that the envA mutation mediates an increased uptake of gentian violet. The uptake of the dye was markedly affected by growth with different antibiotics interfering with macromolecular synthesis. Amino acid starvation of a strain containing envA with a stringent control of ribonucleic acid (RNA) synthesis resulted in a decreased uptake of gentian violet. However, no decrease in dye uptake was found during starvation in an envA transductant with a relaxed control of RNA synthesis. Inhibition of deoxyribonucleic acid (DNA) synthesis by nalidixic acid decreased the uptake of gentian violet of envA cells and, in addition, rendered the cells insensitive to the lytic action of lysozyme. Chloramphenicol treatment increased penetrability in wild-type and starved envA cells. In most instances, this effect of chloramphenicol was prevented by selectively interfering with DNA or RNA synthesis. A coordinate regulation of nucleic acid synthesis and penetrability is suggested.  相似文献   

5.
Coresistance to macrolide, lincosamide, and streptogramin B-type (MLS) antibiotics by a common biochemical mechanism characterizes clinically resistant pathogens. Of 10 streptomycetes tested for resistance to macrolide, lincosamide, and streptogramin B-type antibiotics, only 1, Streptomyces erythreus, the organism used for production of erythromycin, was found resistant to all three classes; moreover, it was the only streptomycete in the series tested found to contain N6-dimethyladenine (m62A) in 23S ribosomal ribonucleic acid, the structural alteration of ribosomal ribonucleic acid associated with clinical resistance. Of the seven streptomycetes tested for the presence of m62A and N6-methyladenine (m6A), two, S. fradiae and S. cirratus, which produce the macrolide antibiotics tylosin and cirramycin, respectively, were found to contain m6A, but not m62A. The remaining strains tested, including strains which produce lincomycin and streptogramins, contained neither m6A nor m62A.  相似文献   

6.
Ribonuclease II action on polyuridylate is competitively inhibited by transfer ribonucleic acid and noncompetitively inhibited by sodium ions. At low substrate levels, adenosine-5'-triphosphate is also inhibitory.  相似文献   

7.
Carbamoyloxyurea, an oxidation product of hydroxyurea, is bactericidal for Escherichia coli. Drug-induced killing is independent of cellular metabolism; ribonucleic acid and protein syntheses are the processes most affected, and the lethal action is accompanied by degradation of cellular deoxyribonucleic acid. In all of these effects the drug differs from hydroxyurea, a primarily bacteriostatic agent that inhibits deoxyribonucleic acid synthesis, whose lethal action ultimately depends on cellular activity.  相似文献   

8.
Ennis, Herbert L. (St. Jude Children's Research Hospital, Memphis, Tenn.). Inhibition of protein synthesis by polypeptide antibiotics. II. In vitro protein synthesis. J. Bacteriol. 90:1109-1119. 1965.-This investigation has shown that the polypeptide antibiotics of the PA 114, vernamycin, and streptogramin complexes are potent inhibitors of the synthetic polynucleotide-stimulated incorporation of amino acids into hot trichloroacetic acid-insoluble peptide. The antibiotics inhibited the transfer of amino acid from aminoacyl-soluble ribonucleic acid (s-RNA) to peptide. The A component of the antibiotic complex was active alone in inhibiting in vitro protein synthesis, whereas the B fraction was totally inactive. However, the A component, when in combination with the B component, gave a greater degree of inhibition than that observed with the A fraction alone. On the other hand, the endogenous incorporation of amino acid was much less susceptible to inhibition than the incorporation of the corresponding amino acid in a system stimulated by synthetic polynucleotide. In addition, synthesis of polyphenylalanine stimulated by polyuridylic acid was inhibited to a greater extent when the antibiotics were added before the addition of polyuridylic acid to the reaction mixture than when the antibiotics were added after the polynucleotide had a chance to attach to the ribosomes. However, the antibiotics apparently did not inhibit the binding of C(14)-polyuridylic acid or C(14)-phenylalanyl-s-RNA to ribosomes. The antibiotics did not affect the normal release of nascent protein from ribosomes and did not disturb protein synthesis by causing misreading of the genetic code. The antibiotics bind irreversibly to the ribosome, or destroy the functional identity of the ribosome. The antibiotic action is apparently a result of the competition between antibiotic and messenger RNA for a functional site(s) on the ribosome.  相似文献   

9.
The effect of three antibiotics, actidione, patulin and polymyxinB, one synthetic antimetabolite, l-2-dichloro-4(p-nitrobenzenesulphonylamido)-5-nitrobenzene (DCDNS) and ribonuclease on the induction of nitratereductase, gross ribonucleic acid content and the incorporationof phosphorus into the ribonucleic acid of cauliflower leaveshas been studied. The effects of inhibitor concentration and duration of incubationon the inhibition of enzyme production were tested. The induction of the enzyme by molybdenum was inhibited by allcompounds tested. Induction by nitrate was inhibited by actidione,patulin and ribonuclease. Gross ribonucleic acid was decreasedby ribonuclease, patulin and DCDNS in nitrate-starved tissue. Phosphorus incorporation into ribonucleic acid was inhibitedby actidione, patulin, polymyxin B and DCDNS when infiltratedwith nitrate into nitrate starved tissue and by patulin, polymyxinB and DCDNS with molybdenum as the inducer in molybdenum deficienttissue. Ribonuclease in nitrate starved tissue increased theincorporation of phosphorus. Some possible explanations of theseresults are advanced. 1Present address: Aligarh Muslim University, U. P., India.  相似文献   

10.
Streptomyces antibioticus synthesizes a mixture of actinomycins which differ at the "imino acid" site of the peptide chains. In the presence of exogenous pipecolic acid, several new actinomycins were synthesized and 70% of the proline in the antibiotic mixture was replaced by the analogue. Three new antibiotics (designated Pip 1alpha, Pip 1beta, and Pip 2) were isolated from culture filtrates, purified, and crystallized. The molar ratio of pipecolic acid to proline was: Pip 1alpha, 1:0; Pip 1beta, 1:1; Pip 2, 2:0. These compounds inhibited the growth and cell division of gram-positive, but not gram-negative, bacteria. The relative inhibitory activity against bacteria, Escherichia coli deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase in vitro, and RNA synthesis in Bacillus subtilis and mouse L-929 cells was: actinomycin IV = Pip 1beta > Pip 2 > Pip 1alpha. Protein synthesis in B. subtilis was less affected, and DNA synthesis was inhibited only at higher concentrations of antibiotic tested. In L cells, DNA formation was reduced less than RNA synthesis, whereas protein synthesis was not blocked under the experimental conditions employed. Kinetic studies with B. subtilis revealed that RNA synthesis was inhibited rapidly followed by an inhibition of protein synthesis. All four antibiotics markedly inhibited the replication of vaccinia virus and reovirus in tissue culture cells, but the production of poliovirus was resistant to the antibiotics. These actinomycins bind to DNA, resulting in an elevation of its T(m) and a decrease in the peak extinction of the actinomycins. The mode of action, as well as the structure-activity relationships among the actinomycins, are discussed relative to a previously proposed model of binding.  相似文献   

11.
M J Holland  J P Holland 《Biochemistry》1978,17(23):4900-4907
Yeast poly(adenylic acid)-containing messenger ribonucleic acid isolated from two strains of Saccharomyces cerevisiae was fractionated by preparative polyacrylamide gel electrophoresis in the presence of formamide. Three messenger ribonucleic acids, present at high intracellular concentration, were electrophoretically eluted from the polyacrylamide gels and translated in a wheat germ cell-free extract. The in vitro synthesized polypeptides were identified by tryptic peptide analysis. Messenger ribonucleic acids coding for enolase and glyceraldehyde-3-phosphate dehydrogenase were isolated from commercially grown baker's yeast (strain F1), and messenger ribonucleic acid coding for phosphoglycerate kinase was isolated from Saccharomyces cerevisiae (ATCC 24657). Significant differences in the spectrum of abundant messenger ribonucleic acids isolated from commercially grown baker's yeast (strain F1) and strain 24657 were observed. When both strains were grown under identical conditions, however, the spectrum of messenger ribonucleic acid isolated from the cells is indistinguishable.  相似文献   

12.
The initial bodies which develop in the inclusion bodies of trachoma agent (Chlamydia trachomatis) were separated from the infected cells nuclei and cytoplasmic components by zone centrifugation in sucrose gradients. The initial bodies are the site of the agent's ribonucleic acid synthesis and serve as precursors to the elementary bodies. The conversion of the initial bodies to elementary bodies is through a process which resembles binary fission. The effects of antibiotics on the development of the trachoma agent initial bodies revealed that rifampin prevented and hydroxyurea affected the formation of the initial bodies. Penicillin led to the formation of structures larger than the initial bodies.  相似文献   

13.
A number of specialized lambda transducing bacteriophages which carry the Escherichia coli gene guaB were isolated from E. coli. One of these bacteriophages, lambda cI857 Sam7 d guaB-2, also carries hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase (EC 6.1.1.21). Histidyl-transfer ribonucleic acid synthetase activities in induced and uninduced lysogens carrying lambda d guaB-2 indicate that the phage carries the entire structural gene and that the gene is under the control of an E. coli promoter. These conclusions were confirmed by the in vivo production of a protein encoded by the phage which comigrates with authentic histidyl-transfer ribonucleic acid synthetase on two-dimensional polyacrylamide gels.  相似文献   

14.
1. The synthesis of ribonucleic acid, desoxyribomicleic acid, and protein in S. muscae has been studied: (a) during the lag phase, (b) during the early log phase, and (c) while the cells are forming an adaptive enzyme for lactose utilization. 2. During the lag phase there may be a 60 per cent increase in ribonucleic acid and protein and a 50 per cent increase in dry weight without a change in cell count, as determined microscopically, or an increase in turbidity. 3. During this period, the increase in protein closely parallels the increase in ribonucleic acid, in contrast to desoxyribonucleic acid, which begins to be synthesized about 45 minutes after the protein and ribonucleic acid have begun to increase. 4. The RNA N/protein N ratio is proportional to the growth rate of all S. muscae strains studied. 5. While the RNA content per cell during the early log phase depends upon the growth rate, the DNA content per cell is fairly constant irrespective of the growth rate of the cell. 6. Resting cells of S. muscae have approximately the same RNA content per cell irrespective of their prospective growth rate. 7. While the cells are adapting to lactose, during which time there is little or no cellular division, there is never an increase of protein without a simultaneous increase in ribonucleic acid, the RNA N/protein N ratio during these intervals being approximately 0.15. 8. Lactose-adapting cells show a loss of ribonucleic acid. The purines-pyrimidines of the ribonucleic acid can be recovered in the cold 5 per cent trichloroacetic acid fraction, but the ribose component is completely lost from the system. 9. The significance of these results is discussed in relation to the importance of ribonucleic acid for protein synthesis.  相似文献   

15.
16.
A mutant of Bacillus subtilis was isolated that was resistant to the growth inhibitory activity of the synergistic antibiotics of the PA 114, streptogramin, and vernamycin complexes. Escherichia coli is naturally resistant to the action of these antibiotics. In both cases, it was shown that resistance was due to an inability of the bacteria to transport the antibiotics into the cell.  相似文献   

17.
The binding characteristics of the antibiotics to nuclei and their effect on the permeability of nuclear membrane with respect to histones and ribonucleic acids have been investigated. The binding constant for chromomycin A3 was found to be 1.4 × 104M?1 and number of binding sites was equal to 3.48 ± 1.08 × 1012 molecules/nuclei. The antibiotic chromomycin A3 enhanced the uptake of lysine-rich histone, actinomycin D decreased the uptake and ethidium bromide had no effect. Chromomycin A3 also enhanced the release of acid insoluble fraction containing RNA from the nuclei, actinomycin D and ethidium bromide inhibited the release of acid insoluble fraction containing RNA. The relevance of this finding to the role of nuclear envelope in understanding the mechanism of action of the antibiotic has been discussed.  相似文献   

18.
Biggs DR 《Plant physiology》1972,50(6):660-666
Actinomycin D stimulated phaseollin production in endocarp tissues of the French bean (Phaseolus vulgaris L.), maximum production being obtained with 25 to 30 micrograms per milliliter of antibiotic. Under these conditions, net incorporation of 3H-uridine into total cell ribonucleic acid was inhibited by more than 80% over a 6-hour induction period. If allowance was made for a 2-hour lag in the action of actinomycin D, inhibition of incorporation was greater than 95%. Contrary to other reports, no evidence was obtained of an increased formation of any specific ribonucleic acid fraction. Actinomycin D applied in the cold (4 C) was not found to be effective in stimulating phaseollin production. When applied in this way, actinomycin D did not affect induction of phaseollin by a fungal peptide, Monilicolin A, although ribonucleic acid synthesis was inhibited by more than 95%. It is suggested that the induced formation of phytoalexins may not be dependent on increased ribonucleic acid synthesis as has previously been claimed.  相似文献   

19.
Multidrug antibiotic resistance is an increasingly serious public health problem worldwide. Thus, there is a significant and urgent need for the development of new classes of antibiotics that do not induce resistance. To develop such antimicrobial compounds, we must look toward agents with novel mechanisms of action. Membrane-permeabilizing antimicrobial peptides (AMPs) are good candidates because they act without high specificity toward a protein target, which reduces the likelihood of induced resistance. Understanding the mechanism of membrane permeabilization is crucial for the development of AMPs into useful antimicrobial agents. Various models, some phenomenological and others more quantitative or semimolecular, have been proposed to explain the action of AMPs. While these models explain many aspects of AMP action, none of the models captures all of the experimental observations, and significant questions remain unanswered. Here, we discuss the state of the field and pose some questions that, if answered, could speed the discovery of clinically useful peptide antibiotics.  相似文献   

20.
Interferon, when added to L cells, inhibited the synthesis of infectious Mengo viral ribonucleic acid, hemagglutinins, and infectious virus by 85 to 95%. Serum-blocking antigens were also reduced by the action of interferon, but threefold excess amounts of these antigens accumulated in interferon-treated cultures above the amounts expected for the quantity of infectious virus that was produced in these cultures. Radioautographic analysis showed that 28 to 36% of the cells of an interferon-treated population synthesized viral ribonucleic acid and 36 to 47% produced viral antigens as determined by an immunofluorescence technique. Despite the reductions in synthesis of viral components, all cells in an interferon-treated culture underwent cytopathic effects at the same time as cells in infected cultures which had not been treated with interferon. The results are compatible with the hypothesis that the cell destruction which results from the infection of L cells with Mengo virus is due to a protein which is coded for by the virus but is not a component of the mature virion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号