首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen)   总被引:8,自引:0,他引:8  
Galectin-3 (formerly called Mac-2 antigen) is a ∼30 kDa carbohydrate-binding protein expressed on the surface of inflammatory macrophages and several macrophage cell lines. We have purified from lysates of the murine macrophage cell line WEHI-3 glycoproteins that bind to a galectin-3 affinity column. Several of these receptors are labelled after biotinylation of intact cells showing their location at the cell surface. N-terminal aminoacid sequencing of intact galectin-3-binding glycoproteins isolated from preparative SDS-gels or of chemically derived fragments showed several homologies with known proteins and identification was confirmed by immunoprecipitation with specific antibodies. The glycoproteins were shown to be: the α-subunit(CD11b) of the CD11b/CD18 integrin(Mac-1 antigen); the lysosomal membrane glycoproteins LAMPs 1 and 2 which are known in part to be expressed at cell surfaces; the Mac-3 antigen, a mouse macrophage differentiation antigen defined by the M3/84 monoclonal antibody and related immunochemically to LAMP-2; the heavy chain of CD98, a 125 kDa heterodimeric glycoprotein identified by the 4F2/RL388 monoclonal antibodies respectively on human and mouse monocytes/macrophages and on activated T cells. Further studies showed that CD11b/CD18, CD98 and Mac-3 are major surface receptors for galectin-3 on murine peritoneal macrophages elicited by thioglycollate. Abbreviations: PBS, phosphate buffered saline; CNBR, cyanogen bromide; PMSF, phenyl methyl sulphonyl fluoride This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
3.
4.
Recent evidence has implicated galectins and their carbohydrate ligands as master regulators of the inflammatory response. Galectin-1, a member of this family, has shown specific anti-inflammatory and immunoregulatory effects. To gain insight into the potential mechanisms involved in these effects, we investigated the effects of galectin-1 in L-arginine metabolism of peritoneal rat macrophages. Pretreatment of macrophages with galectin-1 resulted in a dose- and time-dependent inhibition of lipopolysaccharide-induced nitric oxide (NO) production, accompanied by a decrease in inducible nitric oxide synthase (iNOS) expression (the classic pathway of L-arginine). On the other hand, galectin-1 favored the balance toward activation of L-arginase, the alternative metabolic pathway of L-arginine. Inhibition of NO production was not the result of increased macrophage apoptosis because addition of this beta-galactoside-binding protein to macrophages under the same experimental conditions did not affect the apoptotic threshold of these cells. To understand how endogenous galectin-1 is regulated in macrophages under inflammatory stress, we finally explored the ultrastructural distribution, expression, and secretion of galectin-1 in resident, inflammatory, and activated macrophages. This study provides an alternative cellular mechanism based on the modulation of L-arginine metabolism to understand the molecular basis of the anti-inflammatory properties displayed by this carbohydrate-binding protein.  相似文献   

5.
Human galectin-3 is a novel chemoattractant for monocytes and macrophages   总被引:24,自引:0,他引:24  
Galectin-3 is a beta-galactoside-binding protein implicated in diverse biological processes. We found that galectin-3 induced human monocyte migration in vitro in a dose-dependent manner, and it was chemotactic at high concentrations (1.0 microM) but chemokinetic at low concentrations (10-100 nM). Galectin-3-induced monocyte migration was inhibited by its specific mAb and was blocked by lactose and a C-terminal domain fragment of the protein, indicating that both the N-terminal and C-terminal domains of galectin-3 are involved in this activity. Pertussis toxin (PTX) almost completely blocked monocyte migration induced by high concentrations of galectin-3. Galectin-3 caused a Ca2+ influx in monocytes at high, but not low, concentrations, and both lactose and PTX inhibited this response. There was no cross-desensitization between galectin-3 and any of the monocyte-reactive chemokines examined, including monocyte chemotactic protein-1, macrophage inflammatory protein-1alpha, and stromal cell-derived factor-1alpha. Cultured human macrophages and alveolar macrophages also migrated toward galectin-3, but not monocyte chemotactic protein-1. Finally, galectin-3 was found to cause monocyte accumulation in vivo in mouse air pouches. These results indicate that galectin-3 is a novel chemoattractant for monocytes and macrophages and suggest that the effect is mediated at least in part through a PTX-sensitive (G protein-coupled) pathway.  相似文献   

6.
Previously, we demonstrated that rat macrophages express CD8 and that Ab to CD8 stimulates NO production. We confirm that CD8 is expressed by rat macrophages and extend understanding of its functional significance. Activation of CD8 alpha (OX8 Ab) on alveolar macrophages stimulated mRNA expression for TNF and IL-1 beta and promoted TNF and IL-1 beta secretion. Similarly, OX8 Ab (CD8 alpha) stimulated NR8383 cells to secrete TNF, IL-1 beta, and NO. Activation of CD8 beta (Ab 341) on alveolar macrophages increased mRNA expression for TNF and IL-1 beta and stimulated secretion of TNF, but not IL-1 beta. Interestingly, anti-CD8 Abs did not stimulate IFN-gamma or PGE2 production, or phagocytosis by macrophages. OX8 (CD8 alpha)-induced TNF and IL-1 beta production by macrophages was blocked by inhibitors of protein tyrosine kinase(s), PP1, and genistein, but not by phosphatidylinositol-3 kinase inhibitor, wortmannin. Moreover, OX8 stimulated protein tyrosine kinase activity in NR8383 cells. Further analysis of kinase dependence using antisense to Syk kinase demonstrated that TNF, but not IL-1 beta, stimulation by CD8 alpha is Syk dependent. By contrast, protein kinase C inhibitor Ro 31-8220 had no effect on OX8-induced TNF production, whereas OX8-induced IL-1 beta production was blocked by Ro 31-8220. Thus, there are distinct signaling mechanisms involved in CD8 alpha (OX8)-induced TNF and IL-1 beta production. In summary, macrophages express CD8 molecules that, when activated, stimulate TNF and IL-1 beta expression, probably through mechanisms that include activation of Src and Syk kinases and protein kinase C. These findings identify a previously unknown pathway of macrophage activation likely to be involved in host defense and inflammation.  相似文献   

7.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

8.
Galectin-1, a mammalian lectin expressed in many tissues, induces death of diverse cell types, including lymphocytes and tumor cells. The galectin-1 T cell death pathway is novel and distinct from other death pathways, including those initiated by Fas and corticosteroids. We have found that galectin-1 binding to human T cell lines triggered rapid translocation of endonuclease G from mitochondria to nuclei. However, endonuclease G nuclear translocation occurred without cytochrome c release from mitochondria, without nuclear translocation of apoptosis-inducing factor, and prior to loss of mitochondrial membrane potential. Galectin-1 treatment did not result in caspase activation, nor was death blocked by caspase inhibitors. However, galectin-1 cell death was inhibited by intracellular expression of galectin-3, and galectin-3 expression inhibited the eventual loss of mitochondrial membrane potential. Galectin-1-induced cell death proceeds via a caspase-independent pathway that involves a unique pattern of mitochondrial events, and different galectin family members can coordinately regulate susceptibility to cell death.  相似文献   

9.
Ras proteins activate diverse effector molecules. Depending on the cellular context, Ras activation may have different biological consequences: induction of cell proliferation, senescence, survival, or death. Augmentation and selective activation of particular effector molecules may underlie various Ras actions. In fact, Ras effector-loop mutants interacting with distinctive effectors provide evidence for such selectivity. Interactions of active Ras with escort proteins, such as galectin-1, could also direct Ras selectivity. Here we show that in comparison with Ras transfectants, H-Ras/galectin-1 or K-Ras4B/galectin-1 co-transfectants exhibit enhanced and prolonged epidermal growth factor (EGF)-stimulated increases in Ras-GTP, Raf-1 activity, and active extracellular signal-regulated kinase. Galectin-1 antisense RNA inhibited these EGF responses. Conversely, Ras and galectin-1 co-transfection inhibited the EGF-stimulated increase in phosphoinositide 3-kinase (PI3K) activity. Galectin-1 transfection also inhibited Ras(G12V)-induced PI3K but not Raf-1 activity. Galectin-1 co-immunoprecipitated with Ras(G12V) or with Ras(G12V/T35S) that activate Raf-1 but not with Ras(G12V/Y40C) that activates PI3K. Thus, galectin-1 binds active Ras and diverts its signal to Raf-1 at the expense of PI3K. This demonstrates a novel mechanism controlling the duration and selectivity of the Ras signal. Ras gains selectivity when it is associated with galectin-1, mimicking the selectivity of Ras(T35S), which activates Raf-1 but not PI3K.  相似文献   

10.
11.
TLR-4-mediated signaling is significantly impaired in macrophages from HIV(+) persons, predominantly owing to altered MyD88-dependent pathway signaling caused in part by constitutive activation of PI3K. In this study we assessed in these macrophages if the blunted increase in TLR-4-mediated TNF-α release induced by lipid A (LA) is associated with PI3K-induced upregulation of mammalian target of rapamycin (mTOR) activity. mTOR inhibition with rapamycin enhanced TLR-4-mediated TNF-α release, but suppressed anti-inflammatory IL-10 release. Targeted gene silencing of mTOR in macrophages resulted in LA-induced TNF-α and IL-10 release patterns similar to those induced by rapamycin. Rapamycin restored MyD88/IL-1R-associated kinase interaction in a dose-dependent manner. Targeted gene silencing of MyD88 (short hairpin RNA) and mTOR (RNA interference) inhibition resulted in TLR-4-mediated 70-kDa ribosomal protein S6 kinase activation and enhanced TNF-α release, whereas IL-10 release was inhibited in both silenced and nonsilenced HIV(+) macrophages. Furthermore, mTOR inhibition augmented LA-induced TNF-α release through enhanced and prolonged phosphorylation of ERK1/2 and JNK1/2 MAPK, which was associated with time-dependent MKP-1 destabilization. Taken together, impaired TLR-4-mediated TNF-α release in HIV(+) macrophages is attributable in part to mTOR activation by constitutive PI3K expression in a MyD88-dependent signaling pathway. These changes result in MAPK phosphatase 1 stabilization, which shortens and blunts MAPK activation. mTOR inhibition may serve as a potential therapeutic target to upregulate macrophage innate immune host defense responsiveness in HIV(+) persons.  相似文献   

12.
13.
Galectin-4 is a carbohydrate-binding protein belonging to the galectin family. Here we provide novel evidence that galectin-4 is selectively expressed and secreted by intestinal epithelial cells and binds potently to activated peripheral and mucosal lamina propria T-cells at the CD3 epitope. The carbohydrate-dependent binding of galectin-4 at the CD3 epitope is fully functional and inhibited T cell activation, cycling and expansion. Galectin-4 induced apoptosis of activated peripheral and mucosal lamina propria T cells via calpain-, but not caspase-dependent, pathways. Providing further evidence for its important role in regulating T cell function, galectin-4 blockade by antisense oligonucleotides reduced TNF-alpha inhibitor induced T cell death. Furthermore, in T cells, galectin-4 reduced pro-inflammatory cytokine secretion including IL-17. In a model of experimental colitis, galectin-4 ameliorated mucosal inflammation, induced apoptosis of mucosal T-cells and decreased the secretion of pro-inflammatory cytokines. Our results show that galectin-4 plays a unique role in the intestine and assign a novel role of this protein in controlling intestinal inflammation by a selective induction of T cell apoptosis and cell cycle restriction. Conclusively, after defining its biological role, we propose Galectin-4 is a novel anti-inflammatory agent that could be therapeutically effective in diseases with a disturbed T cell expansion and apoptosis such as inflammatory bowel disease.  相似文献   

14.
A D Foey  M Feldmann  F M Brennan 《Cytokine》2001,16(4):131-142
Interleukin 10 (IL-10) is an anti-inflammatory cytokine produced in the rheumatoid arthritis (RA) joint by macrophages/monocytes and infiltrating peripheral blood derived lymphocytes. Recent data suggest a role for physical cell-to-cell interactions in the production of IL-10. In this report, we have investigated the signalling mechanisms involved in IL-10 production by peripheral blood-derived macrophages upon interaction with fixed CD40L transfectants. IL-10 and tumour necrosis factor alpha (TNF-alpha) are produced by macrophage colony-stimulating factor (M-CSF)-primed monocytes/macrophages in response to CD40 ligation. The utilization of the inhibitors, wortmannin and LY294002, demonstrated a role for phosphatidylinositol 3-kinase (PI3K) whereas rapamycin demonstrated p70 S6-kinase (p70S6K) involvement in the production of IL-10 by these monocytes. The production of TNF-alpha was enhanced by wortmannin and LY294002, suggesting negative regulation by PI3K; however, it was dependent on p70S6K suggesting a PI3K-independent mechanism of p70S6K activation. One alternative pathway that activates p70S6K independently of PI3K and also differentiates between IL-10 and TNF-alpha is the p42/44 mitogen-activated protein kinase (MAPK), which regulates TNF-alpha production in a PI3K-independent manner. These observations suggest that CD40 ligation induces macrophage IL-10 and TNF-alpha production, the mechanism of which is p70S6K-dependent yet bifurcates at the level of PI3K and p42/44 MAPK.  相似文献   

15.
16.

Objectives

To investigate the potential synergy of IL-7-driven T cell-dependent and TLR7-mediated B cell activation and to assess the additive effects of monocyte/macrophages in this respect.

Methods

Isolated CD19 B cells and CD4 T cells from healthy donors were co-cultured with TLR7 agonist (TLR7A, Gardiquimod), IL-7, or their combination with or without CD14 monocytes/macrophages (T/B/mono; 1 : 1 : 0,1). Proliferation was measured using 3H-thymidine incorporation and Ki67 expression. Activation marker (CD19, HLA-DR, CD25) expression was measured by FACS analysis. Immunoglobulins were measured by ELISA and release of cytokines was measured by Luminex assay.

Results

TLR7-induced B cell activation was not associated with T cell activation. IL-7-induced T cell activation alone and together with TLR7A synergistically increased numbers of both proliferating (Ki67+) B cells and T cells, which was further increased in the presence of monocytes/macrophages. This was associated by up regulation of activation markers on B cells and T cells. Additive or synergistic induction of production of immunoglobulins by TLR7 and IL-7 was associated by synergistic induction of T cell cytokines (IFNγ, IL-17A, IL-22), which was only evident in the presence of monocytes/macrophages.

Conclusions

IL-7-induced CD4 T cell activation and TLR7-induced B cell activation synergistically induce T helper cell cytokine and B cell immunoglobulin production, which is critically dependent on monocytes/macrophages. Our results indicate that previously described increased expression of IL-7 and TLR7 together with increased numbers of macrophages at sites of inflammation in autoimmune diseases like RA and pSS significantly contributes to enhanced lymphocyte activation.  相似文献   

17.
Galectin-9 ameliorates various murine autoimmune disease models by regulating T cells and macrophages, although it is not known what role it may have in B cells. The present experiment shows that galectin-9 ameliorates a variety of clinical symptoms, such as proteinuria, arthritis, and hematocrit in MRL/lpr lupus-prone mice. As previously reported, galectin-9 reduces the frequency of Th1, Th17, and activated CD8+ T cells. Although anti-dsDNA antibody was increased in MRL/lpr lupus-prone mice, galectin-9 suppressed anti-dsDNA antibody production, at least partly, by decreasing the number of plasma cells. Galectin-9 seemed to decrease the number of plasma cells by inducing plasma cell apoptosis, and not by suppressing BAFF production. Although about 20% of CD19−/low CD138+ plasma cells expressed Tim-3 in MRL/lpr lupus-prone mice, Tim-3 may not be directly involved in the galectin-9-induced apoptosis, because anti-Tim-3 blocking antibody did not block galectin-9-induced apoptosis. This is the first report of plasma cell apoptosis being induced by galectin-9. Collectively, it is likely that galectin-9 attenuates the clinical severity of MRL lupus-prone mice by regulating T cell function and inducing plasma cell apoptosis.  相似文献   

18.
19.
High blood pressure (HBP) is an important risk factor for cardiac, renal, and vascular dysfunction. Excess inflammation is the major pathogenic mechanism for HBP-induced target organ damage (TOD). N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a tetrapeptide specifically degraded by angiotensin converting enzyme (ACE), reduces inflammation, fibrosis, and TOD induced by HBP. Our hypothesis is that Ac-SDKP exerts its anti-inflammatory effects by inhibiting: 1) differentiation of bone marrow stem cells (BMSC) to macrophages, 2) activation and migration of macrophages, and 3) release of the proinflammatory cytokine TNF-alpha by activated macrophages. BMSC were freshly isolated and cultured in macrophage growth medium. Differentiation of murine BMSC to macrophages was analyzed by flow cytometry using F4/80 as a marker of macrophage maturation. Macrophage migration was measured in a modified Boyden chamber. TNF-alpha release by activated macrophages in culture was measured by ELISA. Myocardial macrophage activation in mice with ANG II-induced hypertension was studied by Western blotting of Mac-2 (galectin-3) protein. Interstitial collagen deposition was measured by picrosirius red staining. We found that Ac-SDKP (10 nM) reduced differentiation of cultured BMSC to mature macrophages by 24.5% [F4/80 positivity: 14.09 +/- 1.06 mean fluorescent intensity for vehicle and 10.63 +/- 0.35 for Ac-SDKP; P < 0.05]. Ac-SDKP also decreased galectin-3 and macrophage colony-stimulating factor-dependent macrophage migration. In addition, Ac-SDKP decreased secretion of TNF-alpha by macrophages stimulated with bacterial LPS. In mice with ANG II-induced hypertension, Ac-SDKP reduced expression of galectin-3, a protein produced by infiltrating macrophages in the myocardium, and interstitial collagen deposition. In conclusion, this study demonstrates that part of the anti-inflammatory effect of Ac-SDKP is due to its direct effect on BMSC and macrophage, inhibiting their differentiation, activation, and cytokine release. These effects explain some of the anti-inflammatory and antifibrotic properties of Ac-SDKP in hypertension.  相似文献   

20.
CD86 expression is up-regulated in activated monocytes and macrophages by a mechanism that is not clearly defined. Here, we report that IL-4-dependent CD86 expression requires activation of ERK1/2 and JAK/STAT6 but is negatively regulated by PKCdelta. PMA differentiated U937 monocytic cells when stimulated with IL-4 increased CD11b and CD86 expression by 52- and 98-fold, respectively. PMA+IL-4 treatment also induced a synergistic enhancement of ERK1/2 activation when compared to the effects of PMA and IL-4 alone. Use of the mitogen or extracellular kinase (MEK) inhibitor, PD98059, completely blocked up-regulation of CD11b and CD86 demonstrating the importance of MEK-activated ERK1/2. JAK inhibition with WHI-P154-abrogated IL-4-dependent CD11b and CD86 up-regulation and inhibited STAT6 tyrosine phosphorylation. Importantly, CD11b and CD86 expression were not reliant on IL-4-dependent activation of phosphatidylinositol 3'-kinase (PI 3-kinase). Blockade of PKCdelta activation with rottlerin prevented CD11b expression but lead to a 75- and 213-fold increase in PMA and PMA+IL-4-dependent CD86 expression, respectively. As anticipated, increasing PKCdelta activity with anti-sense reduction of CD45 increased CD11b expression and reduced CD86 expression. Likewise, rottlerin prevented nuclear localization of activated PKCdelta. We conclude from these data that IL-4-dependent CD11b expression relies predominantly on enhanced activation of ERK1/2, while IL-4-dependent CD86 expression utilizes the JAK/STAT6 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号