首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identity of the mitochondrial permeability transition (mPT) pore, a megachannel embedded in the inner membrane opened by Ca2+, is fiercely debated. Unraveling the components structuring this pore is critical for combating diseases as diverse as neurodegeneration, cancer, autoimmunity, and myopathies in which this phenomenon is implicated. Current consensus is that the pore is formed within, or in‐between F0F1 ATP synthase dimers, but not through their c‐subunit ring. Two recent studies in this issue of EMBO Reports throw more light on these aspects, one by Giorgio et al 1 showing that the β subunit of the ATP synthase harbors a Ca2+‐binding site responsible for triggering mPT, and the other by Bonora et al 2 demonstrating that permeability transition requires dissociation of F0F1 ATP synthase dimers, albeit in a manner involving the c‐subunit ring.  相似文献   

2.
Summary The analysis of anisotropic inhibitor-induced phenomena in mitochondria revealed that two kinds of negative charges are generated near surface of the C-side of mitochondrial inner membranes in the energized state, on the redox complexes (I, III & IV) and F0, respectively, and that positively charged anisotropic inhibitors (AI+) inhibit energy transduction in oxidative phosphorylation by binding to these negative charges. Thus, AI+ have two different inhibition sites in oxidative phosphorylation, the redox complexes and F0. The membrane components generating the negative charges in energized mitochondria were examined by the technique of photoaffinity labeling with monoazide ethidium, which is an AI+. Results showed that monoazide ethidium specifically binds to two kinds of hydrophobic protein (of 8 K and 13 K daltons) of mitochondria energized with succinate, and these proteins were named chargerin I and II, respectively. Chargerin I and II, which may be components of the redox complexes and F0, seem to generate the negative charges described above, and these may be essential for H+-pumps in the redox complexes and F1 · F0. AI+ seem to inhibit ATP synthesis by binding to negatively charged sites of chargerin I and II.Based on these findings and the salient results on energy-transducing membranes obtained recently in other laboratories, a conformational model of H+-pumps and ATP synthesis in mitochondria is proposed, which is also applicable to ATP synthesis in other energy-transducing membranes and ATP-linked active transport of ions.  相似文献   

3.
ATPases with unusual membrane-embedded rotor subunits were found in both F1F0 and A1A0 ATP synthases. The rotor subunit c of A1A0 ATPases is, in most cases, similar to subunit c from F0. Surprisingly, multiplied c subunits with four, six, or even 26 transmembrane spans have been found in some archaea and these multiplication events were sometimes accompanied by loss of the ion-translocating group. Nevertheless, these enzymes are still active as ATP synthases. A duplicated c subunit with only one ion-translocating group was found along with “normal” F0 c subunits in the Na+ F1F0 ATP synthase of the bacterium Acetobacterium woodii. These extraordinary features and exceptional structural and functional variability in the rotor of ATP synthases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

4.
The mitochondrial F1F0-ATP synthase adopts supramolecular structures. The interaction domains between monomers involve components belonging to the F0 domains. In Saccharomyces cerevisiae, alteration of these components destabilizes the oligomeric structures, leading concomitantly to the appearance of monomeric species of ATP synthase and anomalous mitochondrial morphologies in the form of onion-like structures. The mitochondrial ultrastructure at the cristae level is thus modified. Electron microscopy on cross-sections of wild type mitochondria display many short cristae with narrowed intra-cristae space, whereas yeast mutants defected in supramolecular ATP synthases assembly present a low number of large lamellar cristae of constant thickness and traversing the whole organelle. The growth of these internal structures leads finally to mitochondria with sphere-like structures with a mean diameter of 1 μm that are easily identified by epifluorescence microscopy. As a result, ATP synthase is an actor of the mitochondrial ultrastructure in yeast. This paper reviews the ATP synthase components whose modifications lead to anomalous mitochondrial morphology and also provides a schema showing the formation of the so-called onion-like structures.  相似文献   

5.
Phycobiliproteins (PBPs) are a type of promising sensitizers for photodynamic therapy (PDT). Upon irradiation (λ>500nm) of an oxygen-saturated aqueous solution of phycobiliproteins, particularly, C-phycocyanin (C-PC), allophycocyanin (APC) or R-phycoerythrin (R-PE), the formation of singlet oxygen (1O2) was detected by using imidazole in the presence of p-nitrosodimethylaniline (RNO). The bleaching of RNO caused by the presence of imidazole in our system showed typical concentration dependence with a maximum at about 8mM imidazole, which is in agreement with the formation of 1O2. In addition, the generation of 1O2 was verified further in the presence of D2O and specific singlet oxygen quencher — 1,4-diazabicyclo [2,2,2] octane (DABCO) and sodium azide (NaN3). Our experimental results indicated that APC possesses high ability to generate reactive oxygen species and the relative quantum yields of photogeneration of 1O2 by PBPs are as follows: APC > C-PC > R-PE.  相似文献   

6.
It was shown before (Wooten, D. C., and Dilley, R. A. (1993) J. Bioenerg. Biomembr. 25, 557–567; Zakharov, S. D., Li, X., Red'ko, T. P., and Dilley, R. A. (1996) J. Bioenerg. Biomembr. 28, 483–493) that pH dependent reversible Ca2+ binding near the N- and C-terminal end of the 8 kDa subunit c modulates ATP synthesis driven by an applied pH jump in chloroplast and E. coli ATP synthase due to closing a proton gate proposed to exist in the F0 H+ channel of the F0F1 ATP synthase. This mechanism has further been investigated with the use of membrane vesicles from mutants of the cyanobacterium Synechocystis 6803. Vesicles from a mutant with serine at position 37 in the hydrophilic loop of the c-subunit replaced by the charged glutamic acid (strain plc 37) has a higher H+/ATP ratio than the wild type and therefore shows ATP synthesis at low values of H +. The presence of 1 mM CaCl2 during the preparation and storage of these vesicles blocked acid–base jump ATP formation when the pH of the acid side (inside) was between pH 5.6 and 7.1, even though the pH of the acid–base jump was thermodynamically in excess of the necessary energy to drive ATP formation at an external pH above 8.28. That is, in the absence of added CaCl2, ATP formation did occur under those conditions. However, when the base stage pH was 7.16 and the acid stage below pH 5.2, ATP was formed when Ca2+ was present. This is consistent with Ca2+ being displaced by H+ ions from the F0 on the inside of the thylakoid membrane at pH values below about 5.5. Vesicles from a mutant with the serine of position 3 replaced by a cysteine apparently already contain some bound Ca2+ to F0. Addition of 1 mM EGTA during preparation and storage of those vesicles shifted the otherwise already low internal pH needed for onset of ATP synthesis to higher values when the external pH was above 8. With both strains it was shown that the Ca2+ binding effect on acid–base induced ATP synthesis occurs above an internal pH of about 5.5. These results were corroborated by 45Ca2+- ligand blot assays on organic solvent soluble preparations containing the 8 kDa F0 subunit c from the S-3-C mutant ATP synthase, which showed 45Ca2+ binding as occurs with the pea chloroplast subunit III. The phosphorylation efficiency (P/2e), at strong light intensity, of Ca2+ and EGTA treated vesicles from both strains were almost equal showing that Ca2+ or EGTA have no other effect on the ATP synthase such as a change in the proton to ATP ratio. The results indicate that the Ca2+ binding to the F0 H+ channel can block H+ flux through the channel at pH values above about 5.5, but below that pH protons apparently displace the bound Ca2+, opening the CF0 H+ channel between the thylakoid lumen and H+ conductive channel.  相似文献   

7.
《Free radical research》2013,47(1-5):173-184
The sources and steady-state concentration of singlet oxygen in the atmosphere are assessed in view of potential effects on the biosphere. Collision-induced absorption of sunlight by molecular oxygen in 1 atm of air produces O2(a'δg) at a rate P = 1.6 × 10'cm's?1 in bright sunlight. Less than 10% are added to this purely natural source by the photolysis of ozone, and by anthropogenic sensitizers (SO2, NO2, volatile aromatics). Collisional quenching of O2(a'δg) by ground state oxygen establishes a steady-state concentration of ca. 1.7 × 108cm?1'. Reactions of singlet oxygen with other atmospheric pollutants are entirely negligible when compared with the concurrent reactions of ambient OH and 03. Potential effects of atmospheric singlet oxygen on the biosphere are limited by the deposition rate F< 0.051 P which depends on the production rate P of O2(a' δg) in the air layer immediately above the flat surface.  相似文献   

8.
The F1F0 complex of Paracoccus denitrificans (PdF1F0) is the fastest ATP synthase but the slowest ATPase. Sulfite exerts maximal activation of the PdF1F0-ATPase (Pacheco-Moisés, F., García, J. J., Rodríguez-Zavala, J. S., and Moreno-Sánchez, R. (2000). Eur. J. Biochem. 267, 993–1000) but its effect on the PdF1F0-ATP synthase activity remains unknown. Therefore, we studied the effect of sulfite on ATP synthesis and 32Pi ATP exchange reactions of inside-out membrane vesicles of P. denitrificans. Sulfite inhibited both reactions under conditions of maximal pH and normal sensitivity to dicyclohexylcarbodiimide. Sulfite increased by 10- and 5-fold the K 0.5 for Mg2+-ADP and Pi during ATP synthesis, respectively, and by 4-fold the IC50 of Mg2+-ADP for inhibition of the PdF1F0-ATPase activity. Thus, sulfite exerts opposite effects on the forward and reverse functioning of the PdF1F0 complex. These effects are not due to membrane or PdF1F0 uncoupling. Kinetic and structural modifications that could account for these results are discussed.  相似文献   

9.
This article reviews the current status of information regarding the role of energy in the process of oxidative phosphorylation by mitochondria. The available data suggest that in submitochondrial particles (SMP) energy is utilized for the binding of ADP and Pi and for the release of ATP bound at the catalytic sites of F1-ATPase. The process of ATP synthesis on the surface of F1 from F1-bound ADP and Pi appears to be associated with negligible free energy change. The rate of energy production by the respiratory chain modulates the kinetics of ATP synthesis between a lowK m (for ADP and Pi)-lowV max mode and a highK m -highV max mode. TheK m extremes for ADP are 2–3 µM and 120–150 µM, andV max for ATP synthesis at high rates of energy production by bovine-heart SMP is about 440 s–1 (mole F1)–1 at 30°C, which corresponds to 11 µmol ATP (min · mg of protein)–1. The interaction of dicyclohexylcarbodiimide (DCCD) or oligomycin at the proteolipid (subunitc) of the membrane sector (F0) of the ATP synthase complex alters the mode of ATP binding at the catalytic sites of F1, probably to one of lower affinity. It has been suggested that protonic energy might be conveyed to the catalytic sites of F1 in an analogous manner, i.e., via conformation changes in the ATP synthase complex initiated by proton-induced alterations in the structure of the DCCD-binding proteolipid. Finally, the relationship between the steady-state membrane potential () and the rates of electron transfer and ATP synthesis has been discussed. It has been shown, in agreement with the delocalized chemiosmotic mechanism, that under appropriate conditions is exquisitely sensitive to changes in the rates of energy production and consumption.  相似文献   

10.
The single cysteine in the b subunit of the membranous F0 sector and the 19 cysteines in extramembranous F1 sector of the Escherichia coli ATP synthase were replaced by alanine. When cells were grown under anaerobic conditions on glucose, the k cat for ATP hydrolysis of membrane vesicles containing the bCys21Ala mutant enzyme, but not enzymes with other cysteine replacements, was lower, while ATP-driven H+ pumping was unchanged. However, the ATP-dependent increase in the number of accessible thiol groups in membrane vesicles was negated. Furthermore, K+ uptake and molecular hydrogen production by whole cells and protoplasts was greatly decreased. These results indicate a role for the F0 subunit bCys21 in the functionality of F0F1 and coupling to other membranous activities under fermentative conditions.  相似文献   

11.
Specific mgi mutations in the α, β or γ subunits of the mitochondrial F1-ATPase have previously been found to suppress ρ0 lethality in the petite-negative yeast Kluyveromyces lactis. To determine whether the suppressive activity of the altered F1 is dependent on the F0 sector of ATP synthase, we isolated and disrupted the genes KlATP4, 5 and 7, the three nuclear genes encoding subunits b, OSCP and d. Strains disrupted for any one, or all three of these genes are respiration deficient and have reduced viability. However a strain devoid of the three nuclear genes is still unable to lose mitochondrial DNA, whereas a mgi mutant with the three genes inactivated remains petite-positive. In the latter case, ρ0 mutants can be isolated, upon treatment with ethidium bromide, that lack six major F0 subunits, namely the nucleus-encoded subunits b, OSCP and d, and the mitochondrially encoded Atp6, 8 and 9p. Production of ρ0 mutants indicates that an F1-complex carrying a mgi mutation can assemble in the absence of F0 subunits and that suppression of ρ0 lethality is an intrinsic property of the altered F1 particle. Received: 7 April 1998 / Accepted: 10 June 1998  相似文献   

12.
The mitochondrial F1Fo‐ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F1Fo‐ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the β subunits in the F1 domain and inhibits F1Fo‐ATPase‐catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F1Fo‐ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower Ki values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F1Fo‐ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single‐molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F1Fo‐ATPase catalyzes ATP synthesis and hydrolysis. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 830–840, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
The number of accessible SH groups was determined in membrane vesicles prepared from Enterococcus hirae grown under anaerobic conditions at alkaline pH (pH 8.0). Addition of ATP or nicotinamide adenine dinucleotides (NAD++NADH) to the vesicles caused a ∼4-fold or ∼1.9-fold increase in the number of SH-groups, respectively. This was inhibited by treatment with N-ethylmaleimide. The increase was significant when ATP and NAD++NADH both were added. The change was lacking in the presence of the F0F1-ATPase inhibitors N,N′-diclohexylcarbodiimide or sodium azide. This was also absent in atp mutant with defect in the F0F1-ATPase and, in addition, it was less in potassium ion–free medium. These results are correlated with data about K+-dependent F0F1-ATPase activity, suggesting a relationship between the F0F1-ATPase and K+ uptake Trk-like system. The latter may be regulated by NAD or NADH mediating conformational changes.  相似文献   

14.
The combined effect of several sensitizers and light on H 2O or D2O solutions of DNA-histone complexes, as well as the significance of singlet oxygen (1O2), in this photosensitizing reaction has been studied. On H2O solutions, the production of 1O2, as well as the formation of DNA-protein cross-links (DPCs), were found to be dependent on light dose for all the sensitizers. Mesotetra (4N-methylpyridyl) porphine (T4 MPyP), methylene blue (MB), and toluidine blue (TB) were the best photosensitizers with regard to tryptophan photolysis, followed by hematoporphyrin (HP), thioflavine T (TT), and pyronin G (PG). The formation of DPCs showed high initial rates, reaching a plateau at dose over 90 J/cm 2. Under these irradiation conditions, the percentage of DPCs induced by the sensitizers decreases in the order T4 MPyP > MB > TB ? HP ≈ TT ? PG (≈0). These DPCs were totally destroyed with proteinase K (15μg/ml). The irradiation of the DNA-histone-sensitizer solutions in the presence of L -carnosine (5 × 10-4 M) produced approximately a 50% of DPCs inhibition for T4 MPyP, MB, and TB, and a total inhibition for HP, TT, and PG. The substitution of H2O by D2O as solvent significantly increased the photodegradation of tryptophan, as well as the photoinduction of DPCs by the sensitizers. The results obtained indicate that singlet oxygen is the main agent responsible in the DNA–protein cross-linking formation. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.  相似文献   

16.
Two interesting previously reported properties of mitochondrial F1 ATPase have been confirmed and have been examined by18O exchange measurements to assess if they are consistent with sequential participation of catalytic sites during ATP hydrolysis. These are the ability of HCO 3 to increase reaction rate with apparent loss of cooperative interaction between subunits and the ability of ITP to accelerate the hydrolysis of a low concentration of ATP. The effect of HCO 3 was tested at concentrations of ATP lower than previous measurements. The activation disappeared when ATP was reduced to 0.1 µM. The HCO 3 activation at higher ATP concentrations did not change the extent of reversal of the cleavage of tightly bound ATP at the catalytic site, as measured by the average number of water oxygens incorporated with each Pi formed when 5 or 10 µM ATP is hydrolyzed. The data are consistent with sequential site participation with HCO 3 acceleration of ADP departure after a binding change that stops18O exchange and loosens ADP binding.When ITP concentration was lowered during net ITP hydrolysis by F1 ATPase an increase in water oxygen incorporation into Pi formed is observed, as noted previously for ATP hydrolysis. The acceleration of the cleavage of a constant low concentration of [-18O]ATP by concomitant hydrolysis of increasing concentrations of ITP was accompanied by a decrease in water oxygen incorporation with each Pi formed from the ATP. These results add to evidence for the binding change mechanism for F1 ATPase with sequential participation of catalytic sites.  相似文献   

17.
《BBA》2022,1863(5):148544
Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase.Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far.Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1.The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the βQ263L mutation effect was reversed: the βQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.  相似文献   

18.
We measured ATP, phosphocreatine (PCr), inorganic phosphate (Pi), and the intracellular pH in rat hindlimb muscles during submaximal isometric exercise with various O2 deliveries using31P nuclear magnetic resonance spectroscopy (31P NMR) to evaluate changes in energy metabolism in relation to O2 availability. Delivery of O2 to muscles was altered by controlling the fractional concentration of inspired oxygen (F IO2) at 0.50, 0.28, 0.21, 0.11 and 0.08 with monitoring partial pressure of oxygen and carbon dioxide, and bicarbonate at the femoral artery. The steady-state ratio of PCr : (PCr + Pi) during exercise decreased as a function ofF IO2 even at 0.21. Significant acidification of the intracellular pH during exercise occurred at 0.08F IO2. Change in the PCr : (PCr + Pi) ratio demonstrated that the oxidative capacity, i.e. the maximal rate of the oxidative phosphorylation reaction, in muscle was not limited by O2 delivery at 0.50F IO2, but was significantly limited at 0.21F IO2 or below. Change in the intracellular pH at 0.08F IO2 could be interpreted as an increase in lactate, suggesting activation of glycolysis. Correlation between the PCr : (PCr + Pi) ratio and the intracellular pH revealed the existence of a critical PCr : (PCr + Pi) ratio and pH for glycolysis activation at around 0.4 and 6.7, respectively.  相似文献   

19.
A homodimer of b subunits constitutes the peripheral stalk linking the F1 and F0 sectors of the Escherichia coli ATP synthase. Each b subunit has a single-membrane domain. The constraints on the membrane domain have been studied by systematic mutagenesis. Replacement of a segment proximal to the cytoplasmic side of the membrane had minimal impact on F1F0 ATP synthase. However, multiple substitutions on the periplasmic side resulted in defects in assembly of the enzyme complex. These mutants had insufficient oxidative phosphorylation to support growth, and biochemical studies showed little F1F0 ATPase and no detectable ATP-driven proton pumping activity. Expression of the b N2A,T6A,Q10A subunit was also oxidative phosphorylation deficient, but the b N2A,T6A,Q10A protein was incorporated into an F1F0 complex. Single amino acid substitutions had minimal reductions in F1F0 ATP synthase function. The evidence suggests that the b subunit membrane domain has several sites of interaction contributing to assembly of F0, and that these interactions are strongest on the periplasmic side of the bilayer.  相似文献   

20.
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion‐current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage‐clamp technique. All agonists elicited Cl? currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca2+ concentration ([Ca2+]i), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl? (FCl) currents, while AII activated an oscillatory response; a robust Ca2+ influx linked specifically to FCl activation elicited an inward current (Iiw,Ca) which was carried mainly by Cl? ions, through channels with a sequence of permeability of SCN? > I? > Br? > Cl?. Like FCl, Iiw,Ca was not dependent on oocyte [Ca2+]i; instead both were eliminated by preventing [Ca2+]i increase in the follicular cells, and also by U73122 and 2‐APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that FCl and Iiw,Ca were produced by the expected, PLC‐stimulated Ca2+‐release and Ca2+‐influx, respectively, and by the opening of ICl(Ca) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca2+‐influx appeared to be driven through store‐operated, calcium‐like channels. The AII response, which is also known to require PLC activation, did not activate Iiw,Ca and was strictly dependent on oocyte [Ca2+]i increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap‐junction channels. J. Cell. Physiol. 227: 3457–3470, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号