首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sub-nuclear fractionation. I. Procedure and characterization of fractions   总被引:7,自引:0,他引:7  
A procedure for fractionation of nuclei from rat liver, Xenopus liver and Xenopus erythrocytes is described. It is based on mild sonication of isolated nuclei for 7–12 sec in a nearly isotonic medium, separation of nuclear sap and centrifugation on a discontinuous sucrose density gradient containing Na and K citrate. Nuclei are thus separated in a single operation into 8 fractions representing nucleoplasm, euchromatin, nucleoli, heterochromatin and nuclear membranes. The sub-nuclear fractions were characterized by chemical composition (DNA, protein, RNA and phospholipid), electron microscopy, thermal denaturation properties of chromatin, relative binding of 3H-actinomycin D, polyacrylamide gel electrophoresis of nuclear proteins and titration of membranes against Triton X-100. Approx. 10% of total DNA was recovered as heterochromatin associated with membranes but the bulk of nuclear membranes co-sedimented with the major euchromatin zones. Subnuclear fractions prepared in this way retain virtually all the RNA polymerase activity bound to chromatin [41].  相似文献   

2.
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.  相似文献   

3.
The binding of a chemical carcinogen to components of hepatic chromatin in male rats was examined. After a single injection of N-[3H]hydroxy-2-acetylaminofluorene ([3H]OH-AAF) covalent binding to chromatin RNA, protein, and DNA occurs. The amount of carcinogen bound to RNA was approximately 5 times greater than to DNA, and 10 times that of the protein. However, loss of carcinogen from RNA with time was rapid, whereas a persistent binding to DNA equal to 15% of the initial values was observed. To localize the initial and persistent DNA-bound carcinogen, the genome was fractionated using two different chromatin fractionation procedures. The procedures used yielded 3 chromatin fractions based on physical characteristics, degree of association with nascent RNA and in vitro template capacity. Based on those parameters, these chromatin fractions have been tentatively classified as template expressed euchromatin, a repressed heterochromatin, and a highly condensed pelleted heterochromatin. With both the glycerol gradient chromatin fractionation procedure and the selective MgCl2 chromatin precipitation procedure, the initial (2 h) binding of carcinogen was greatest on the euchromatin DNA. Loss of carcinogen from the DNA, however, was also significantly faster from the euchromatin when compared to the heterochromatin and the pelleted heterochromatin. By 10 days after a single injection of the carcinogen, the largest amount of bound fluorene residues was located on the pelleted heterochromatin DNA, an apparently repressed portion of the genome, while less than 5% of the initial values were found on either the eu- or heterochromatin. When the rats were fed a 2-acetylaminofluorene-containing diet, loss of carcinogen from the pelleted heterochromatin DNA was enhanced, while loss from the euchromatin DNA was reduced. The covalent nature of the carcinogen modification of DNA was confirmed by thin-layer chromatography (TLC). These studies also demonstrated 2 separate carcinogen-purine base adducts which were identified as N-(guanin-8-yl)-N-AF and 3-(guanin-N2-yl)-N-AAF based on either co-chromatography with an authentic standard or on published Rf-values, respectively. The pelleted heterochromatin DNA had a significantly greater proportion of the 3-guanine-N2 adduct when compared to DNA from either the eu- or heterochromatin.  相似文献   

4.
Cytochemical techniques have been used to study the distribution of nonhistone proteins in sections of interphase nuclei and mitotic chromosomes. Condensed chromatin, including the heterochromatin of interphase nuclei from frog liver, and mitotic metaphase and anaphase chromosomes from bovine kidney, show little or no staining for nonhistone protein. Regions of frog liver nuclei which contain extended chromatin (euchromatin) stain intensely for nonhistone protein. These differences in nonhistone staining of condensed and extended chromatin support the suggestion that regions of condensed chromatin contain considerably less nonhistone protein than regions of extended chromatin. The results suggest further that there may be considerably less nonhistone protein associated with chromosomes and interphase heterochromatin than has been reported in most previous analyses of isolated chromatin and chromosome preparations.  相似文献   

5.
Grigoryev SA 《FEBS letters》2004,564(1-2):4-8
Interphase eukaryotic nuclei contain diffuse euchromatin and condensed heterochromatin. Current textbook models suggest that chromatin condensation occurs via accordion-type compaction of nucleosome zigzag chains. Recent studies have revealed several structural aspects that distinguish the highly compact state of condensed heterochromatin. These include an extensive lateral self-association of chromatin fibers, prominent nucleosome linker 'stems', and special protein factors that promote chromatin self-association. Here I review the molecular and structural determinants of chromatin compaction and discuss how heterochromatin spreading may be mediated by lateral self-association of zigzag nucleosome arrays.  相似文献   

6.
Feitoza L  Guerra M 《Genetica》2011,139(3):305-314
Eukaryotic chromosomes are organized into two large and distinct domains, euchromatin and heterochromatin, which are cytologically characterized by different degrees of chromatin compaction during interphase/prophase and by post-synthesis modifications of histones and DNA methylation. Typically, heterochromatin remains condensed during the entire cell cycle whereas euchromatin is decondensed at interphase. However, a fraction of the euchromatin can also remain condensed during interphase and appears as early condensing prophase chromatin. 5S and 45S rDNA sites and telomere DNA were used to characterize these regions in metaphase and interphase nuclei. We investigated the chromosomal distribution of modified histones and methylated DNA in the early and late condensing prophase chromatin of two species with clear differentiation between these domains. Both species, Costus spiralis and Eleutherine bulbosa, additionally have a small amount of classical heterochromatin detected by CMA/DAPI staining. The distribution of H4 acetylated at lysine 5 (H4K5ac), H3 phosphorylated at serine 10 (H3S10ph), H3 dimethylated at lysine 4 or 9 (H3K4me2, H3K9me2), and 5-methylcytosine was compared in metaphase, prophase, and interphase cells by immunostaining with specific antibodies. In both species, the late condensing prophase chromatin was highly enriched in H4K5ac and H3K4me2 whereas the early condensing chromatin was very poor in these marks. H3K9me2 was apparently uniformly distributed along the chromosomes whereas the early condensing chromatin was slightly enriched in 5-methylcytosine. Signals of H3S10ph were restricted to the pericentromeric region of all chromosomes. Notably, none of these marks distinguished classical heterochromatin from the early condensing euchromatin. It is suggested that the early condensing chromatin is an intermediate type between classical heterochromatin and euchromatin.  相似文献   

7.
Rat liver chromatin was sheared and separated into template-active (euchromatin) and template-inactive (heterochromatin) fractions by glycerol gradient centrifugation. Chromosomal proteins associated with the chromatin fractions were analyzed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis. Histone composition did not vary qualitatively, but more histone protein was consistently found associated with the euchromatin fractions. Nonhistone protein banding patterns for these chromatin fractions exhibited marked heterogeneity, with a number of bands unique to either eu- or heterochromatin.  相似文献   

8.
Franz Pera  Ulrich Wolf 《Chromosoma》1967,22(3):378-389
X-chromosome behaviour of female Microtus agrestis in interphase nuclei with and without large chromocenters was examined in cultured epithelial and fibroblast cells. By means of pulse-labeling, the configuration of the X-chromosomes in these nuclei can be illustrated; staining with pararosaniline-methylgreen seems to be most suitable. According to the replication behaviour, three types of chromatin can be discerned in the X-chromosomes: early replicating euchromatin, late replicating sex chromatin, and very late replicating heterochromatin. In fibroblasts only the sex chromatin forms a single, small chromocenter; in epithelial cells both the sex chromatin and the remaining heterochromatin form large chromocenters. Both types of heterochromatin replicate their DNA in the condensed state. It seems likely that the late replicating segments of the X-chromosomes (sex chromatin and remaining heterochromatin) are condensed in every cell, but they may not always be configurated or even visible as typical chromocenters; these segments could be distributed over a wide range of compact to more or less diffuse superstructures.  相似文献   

9.
M L Mello  B de C Vidal 《Cytobios》1989,59(237):87-93
The binding of toluidine blue molecules under Mg2+ competitive staining conditions was investigated in chromocentres and the euchromatin of single- and multi-chromocentred nuclei of Triatoma infestans Malpighian tubule cells. It was demonstrated that the chromocentre of single-chromocentred nuclei exhibited the largest critical electrolyte concentration (CEC) value (0.4 M), followed by the chromocentres of multi-chromocentred nuclei (0.3 M) and the euchromatin (0.2 M). The differences in CEC values were assumed to be due to differences in availability of free DNA phosphates and in packing states of the DNA-protein complexes of these chromatin types. Differences in chromatin supra-organization were evident for the chromocentral heterochromatin of single vs multi-chromocentred nuclei. This was also valid for the chromocentral heterochromatin in some multi-chromocentred nuclei, when one of the heterochromatic bodies was especially larger than the others.  相似文献   

10.
The experimental conditions for DNAase I digestion in situ for plant nuclei have been presented. Cytophotometric measurements of DNA loss performed on Feulgen-stained nuclei of three species differing in 2C DNA, heterochromatin and condensed euchromatin contents have shown that the lower 2C DNA amount the higher is DNase I sensitivity. Heterochromatin and some fractions of euchromatin are DNase I resistant. Microdensitometric measurements along M chromosome in Vicia faba have demonstrated the sites hypersensitive to DNase I.  相似文献   

11.
W. Nagl 《Protoplasma》1979,100(1):53-71
Summary In contrast to mammalian cell nuclei those of plants display nearly an identical ultrastructure in all developmental stages and tissues. This indicates that the gross organization of chromatin is species-specific, but not tissue-specific and function-dependent. The species-specific nuclear ultrastructure is determined by the basic nuclear DNA content (2 C value). The higher the DNA content, the more the euchromatin remains in the condensed state during interphase, but to a lower coiling order than the heterochromatin.Some difficulties in the interpretation of electron micrographs of cell nuclei, and the possible role of repetitive DNA sequences in the karyotypical condensation of euchromatin in plants are discussed.  相似文献   

12.
The chromatin structure of six diploids species ofCostus was analysed using conventional Giemsa staining, C-banding and DAPI/CMA fluorochromes. The interphase nuclei in all the species show an areticulate structure and the prophase chromosomes show large blocks of proximal condensed chromatin. After banding procedures, each chromosome exhibits only centromeric dot-like DAPI+/CMA C-bands whereas the satellites (one pair at each karyotype) are weakly stained after C-banding and show a DAPI/CMA+ fluorescence. Two chromocentres show bright fluorescence with CMA and weak staining after C-banding whereas the others chromocentres show only a small fraction of DAPI+ heterochromatin. These results were interpreted to mean that the greater part of the condensed chromatin has an euchromatic nature whereas two types of well localized heterochromatin occur in a small proportion. The Z-stage analysis suggests that heterochromatin and condensed euchromatin decondense at different times. The chromosome number and morphology of all species are given and the implications of the condensed euchromatin are discussed.Dedicated to Prof.Elisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

13.
Heterochromatin in the cell nucleus seems to concentrate various proteins, such as Drosophila heterochromatin protein 1, which maintain the repressed state of gene expression. However, it still remains obscure how protein composition related to chromatin structure is different between heterochromatin and euchromatin in interphase nuclei. We isolated cytological heterochromatin from sonicated interphase nuclei obtained from rat liver cells and prepared antisera against it. The dense heterochromatic bodies seen in the preparation of intact nuclei were duplicated in a relatively pure form during the preparation of heterochromatin. In the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, differences between the fractions of heterochromatin and euchromatin were noted by their protein composition. Isolated heterochromatin was then digested by DNase after partial digestion with trypsin and its dense structure changed to become highly sensitive to DNase. The prepared antibodies reacted with the heterochromatin region of rat liver cell nuclei and isolated cytological heterochromatin; however, they did not react with euchromatin. Using immunohistochemistry, the antibodies bound to each cell nucleus in all tissues observed; some cell types were distinguished by their differential stainability (e.g. staining in the cytoplasm). Staining of the mitotic cells showed that the proteins recognized by the antibodies were localized in the cytoplasm and, in part, on the chromosomes. Based on the results of molecular cloning from rat liver cDNA library using the antibodies as a probe, it seemed that the antibodies mainly recognized two proteins similar to arginase and general vesicular transport factor p115, respectively. The results obtained from these experiments reveal that some proteins located in the heterochromatin of interphase liver cell nuclei seem to play important roles in condensing a portion of the chromatin structure during interphase and suggest that proteins composing heterochromatin might be changed according to cell types or the stage of the cell cycle.  相似文献   

14.
Indian Childhood Cirrhosis (ICC) is a disease of abnormal copper metabolism commonly characterized by swelling and degeneration of liver cells along with the presence of orcein staining deposits of copper. Hepatic copper content of ICC patients was about 43 fold higher than those of control subjects. The data on sub-cellular distribution of copper revealed massive accumulation of Copper (73%) of total cell copper) in the nuclear fraction (455 g Cu/g tissue nuclei). On further distribution of copper in nuclear fraction, the enrichment of copper in heterochromatin and euchromatin of ICC nuclei was found to be 48 and 15 fold higher over control fractions respectively. The ultra-violet spectra of heterochromatin and euchromatin isolated from ICC nuclear fraction showed a broad absorption maxima as compared to controls. Further, A260/A280 ratio was markedly lower in heterochromatin and euchromatin of ICC liver in comparison to controls. An antioxidant enzyme, catalase activity was also significantly reduced in ICC liver as compared to control. Further, DNA fragmentation studies indicated that there was significantly increased DNA fragmentation in ICC liver. Collectively, these findings suggest that massive accumulation of copper in nucleus and decrease in catalase activity was associated with DNA fragmentation in hepatocyte of ICC disease.Abbreviations ICC Indian Childhood Cirrhosis  相似文献   

15.
16.
Heterochromatin protein 1 (HP1) is a nonhistone chromosomal protein, first identified in Drosophila, that plays a dose-dependent role in gene silencing. Three orthologs, HP1alpha, HP1beta, and HP1gamma, have been characterized in mammals. While HP1alpha and HP1beta have been unambiguously localized in heterochromatin by immunocytochemical methods, HP1gamma has been found either exclusively associated with euchromatin or present in both euchromatin and heterochromatin. Here, using an antibody directed against a peptide epitope at the carboxyl-terminal end of the molecule, we localize HP1gamma in both euchromatin and heterochromatin compartments of interphase nuclei, as well as in the pericentromeric chromatin and arms of mitotic chromosomes of 3T3 cells. This dual location was also observed in nuclei expressing HP1gamma as a fusion protein with green fluorescent protein. In contrast, when the distribution of HP1gamma was analyzed with antibodies directed against an amino-terminal epitope, the protein was detectable in euchromatin and not in heterochromatin, except for transient heterochromatin staining during the late S phase, when the heterochromatin undergoes replication. These data suggest that the controversial immunolocalization of HP1gamma in chromatin is due to the use of antibodies directed against topologically distinct epitopes, those present at the amino-terminal end of the molecule being selectively masked in nonreplicative heterochromatin.  相似文献   

17.
Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.  相似文献   

18.
In this work, we examine how volume exclusion caused by regions of high chromatin density might influence the time required for proteins to find specific DNA binding sites. The spatial variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear space into regions of low-density euchromatin and high-density heterochromatin. Volume exclusion experienced by a diffusing protein caused by this varying density of chromatin is modeled by a repulsive potential. The value of the potential at a given point in space is chosen to be proportional to the density of chromatin at that location. The constant of proportionality, called the volume exclusivity, provides a model parameter that determines the strength of volume exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the protein experiences no volume exclusion). An analytical theory is developed to explain these results. The theory suggests that for binding sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction in the volume searched in finding the binding site, with the height of effective potential barriers the protein must cross during the search process.  相似文献   

19.
DNA-dependent RNA polymerase activities were measured in subnuclear fractions obtained from rat liver by the procedure described in the preceding paper [14]. Most of the total nuclear enzyme was recovered in a form bound to chromatin with only small amounts as free enzyme in the nucleoplasm. The multiple eukaryotic RNA polymerases were resolved according to the endogenous template to which they were bound and which they continue to transcribe in vitro. The A and B forms of the enzyme were distinguished from each other by their differential sensitivities to α-amanitin, exogenous native and denatured DNA, thermal denaturation at 45 °, Mg2+ and Mn2 ions, high ionic strength and by the binding of 14C-methyl-γ-amanitin. RNA polymerase B (α-amanitin-sensitive) was exclusively recovered in the nucleoplasmic and euchromatin fractions. RNA polymerase A was recovered in the dispersed nucleolar as well as in heterochromatin. By assaying in the presence of α-amanitin subnuclear fractions that had been pre-incubated at 45 °C a third enzyme (form C) was located exclusively in heterochromatin fractions. Only the euchromatin associated RNA polymerase B was capable of initiating the synthesis of new RNA chains in vitro on endogenous template at low ionic strength. Raising the ionic strength abolished initiation but accelerated chain elongation by this form of enzyme.When nuclear RNA was labelled in vivo, newly made RNA turned over rapidly in the nucleoplasm but accumulated in the euchromatin + membrane fraction. RNA in the nucleolar fraction accumulated gradually after a lag period, whereas a significant amount of rapidly-labelled nuclear RNA was recovered in the heterochromatin fractions. The distribution of RNA labelled in vivo compared with that of RNA polymerase activities suggested that RNA synthesized in vivo is rapidly translocated from its site of synthesis to some other sites within the nucleus.  相似文献   

20.
The lateral bud meristems of Tradescantia paludosa show a characteristic cytohistological zonation during dormancy. The cells comprising this so called ‘zone of inhibition’, which is located at the extreme tip of the bud apex, rarely synthesize nuclear DNA or undergo mitotic division. These nuclei are as large as prophase nuclei, yet contain only telophase (2C) amounts of DNA and significantly lower amounts of histone as compared to the 2C nuclei of the actively dividing cells.Ultrastructural observations of the nuclei in the ‘zone of inhibition’ show that a large proportion of the chromatin is organized as less condensed, diffuse, euchromatin fibrils; however, the chromatin of the actively dividing nuclei of the cells outside the ‘zone of inhibition’ or in the released bud meristems is organized to a greater extent as condensed clumps of heterochromatin. When the dormancy is released, the nuclei in the ‘zone of inhibition’ synthesize DNA and histone and undergo cell division in approx. 4 days. Striking changes in the organization of chromatin fibrils take place during this transition period. The diffuse chromatin fibrils of the nuclei in the ‘zone of inhibition’ progressively become more and more condensed as the cell prepares to undergo the first mitotic division after the release of dormancy. This change which is coupled with the synthesis of histones in the nuclei of the ‘zone of inhibition’ suggests a prominent structural role of these basic proteins in the organization of the chromatin. The large volume of 2C nuclei of the ‘zone of inhibition’ seems, therefore, to result not from a great nuclear mass, but probably from a relatively small degree of condensation of chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号