首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Hedgehog (Hh) signaling plays vital roles in animal development and tissue homeostasis, and its misregulation causes congenital diseases and several types of cancer. Suppressor of Fused (Su(fu)) is a conserved inhibitory component of the Hh signaling pathway, but how it is regulated remains poorly understood. Here we demonstrate that in Drosophila Hh signaling promotes downregulation of Su(fu) through its target protein HIB (Hh-induced BTB protein). Interestingly, although HIB-mediated downregulation of Su(fu) depends on the E3 ubiquitin ligase Cul3, HIB does not directly regulate Su(fu) protein stability. Through an RNAi-based candidate gene screen, we identify the spliceosome factor Crooked neck (Crn) as a regulator of Su(fu) level. Epistasis analysis indicates that HIB downregulates Su(fu) through Crn. Furthermore, we provide evidence that HIB retains Crn in the nucleus, leading to reduced Su(fu) protein level. Finally, we show that SPOP, the mammalian homologue of HIB, can substitute HIB to downregulate Su(fu) level in Drosophila. Our study suggests that Hh regulates both Ci and Su(fu) levels through its target HIB, thus uncovering a novel feedback mechanism that regulates Hh signal transduction. The dual function of HIB may provide a buffering mechanism to fine-tune Hh pathway activity.  相似文献   

15.
16.
17.
18.
19.
Ci: a complex transducer of the hedgehog signal.   总被引:10,自引:0,他引:10  
  相似文献   

20.
The Hedgehog (Hh) signal is transduced via Cubitus interruptus (Ci) to specify cell fates in the Drosophila wing. In the absence of Hh, the 155 kDa full-length form of Ci is cleaved into a 75 kDa repressor. Hh inhibits the proteolysis of full-length Ci and facilitates its conversion into an activator. Recently, it has been suggested that Hh promotes Ci nuclear import in tissue culture cells. We have studied the mechanism of Ci nuclear import in vivo and the relationship between nuclear import, stabilization and activation. We found that Ci rapidly translocates to the nucleus in cells close to the anteroposterior (AP) boundary and this rapid nuclear import requires Hh signaling. The nuclear import of Ci is regulated by Hh even under conditions in which Ci is fully stabilized. Furthermore, cells that exhibit Ci stabilization and rapid nuclear import do not necessarily exhibit maximal Ci activity. It has been previously shown that stabilization does not suffice for activation. Consistent with this finding, our results suggest that the mechanisms regulating nuclear import, stabilization and activation are distinct from each other. Finally, we show that cos2 and pka, two molecules that have been characterized primarily as negative regulators of Ci activity, also have positive roles in the activation of Ci in response to Hh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号