首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The liver is a major site of glucose disposal during chronic (5 day) total parenteral (TPN) and enteral (TEN) nutrition. Net hepatic glucose uptake (NHGU) is dependent on the route of delivery when only glucose is delivered acutely; however, the hepatic response to chronic TPN and TEN is very similar. We aimed to determine whether the route of nutrient delivery altered the acute (first 8 h) response of the liver and whether chronic enteral delivery of glucose alone could augment the adaptive response to TPN. Chronically catheterized conscious dogs received either TPN or TEN containing glucose, Intralipid, and Travasol for either 8 h or 5 days. Another group received TPN for 5 days, but approximately 50% of the glucose in the nutrition was given via the enteral route (TPN+EG). Hepatic metabolism was assessed with tracer and arteriovenous difference techniques. In the presence of similar arterial plasma glucose levels (approximately 6 mM), NHGU and net hepatic lactate release increased approximately twofold between 8 h and 5 days in TPN and TEN. NHGU (26 +/- 1 vs. 23 +/- 3 micromol.kg(-1).min(-1)) and net hepatic lactate release (44 +/- 1 vs. 34 +/- 6 micromol.kg(-1).min(-1)) in TPN+EG were similar to results for TPN, despite lower insulin levels (96 +/- 6 vs. 58 +/- 16 pM, TPN vs. TPN+EG). TEN does not acutely enhance NHGU or disposition above that seen with TPN. However, partial delivery of enteral glucose is effective in decreasing the insulin requirement during chronic TPN.  相似文献   

2.
3.
The control of hepatic metabolism by substrates and hormones was assessed in perfused liver from young Muscovy ducklings. Studies were performed in fed or 24-h fasted 5-week-old thermoneutral (25 degrees C; TN) or cold-acclimated ducklings (4 degrees C; CA) and results were compared with those obtained in rats. Basal oxygen uptake of perfused liver (LVO2) was higher after cold acclimation both in fed (+65%) and 24-h fasted (+29%) ducklings and in 24-h fasted rats (+34%). Lactate (2 mM), the main gluconeogenic substrate in birds, similarly increased LVO2 in both TN and CA ducklings and the effect was larger after fasting. Both glucagon and norepinephrine dose-dependently increased LVO2 in ducklings and rats, but cold acclimation did not improve liver response and liver sensitivity to norepinephrine in ducklings was even reduced in CA animals. Liver contribution to glucagon-induced thermogenesis in vivo was estimated to be 22% in TN and 12% in CA ducklings. Glucagon stimulated gluconeogenesis from lactate in duckling liver and the stimulation was 2.2-fold higher in CA than in TN fasted birds. These results indicate a stimulated hepatic oxidative metabolism in CA ducklings but hepatic glucagon-induced thermogenesis (as measured by LVO2) was not improved. A role of the liver is suggested in duckling metabolic acclimation to cold through an enhanced hepatic gluconeogenesis under glucagon control.  相似文献   

4.
5.
An 8- to 10-fold stimulation by insulin of glucose uptake by epididymal fat tissue was obtained in serial incubations of this tissue in a simplified medium composed of tris (hydroxymethyl) aminomethane chloride, CO2, and glucose.The replacement of chloride ions in the incubation medium by acetate or other anions resulted in an increase in the glucose uptake by epididymal fat tissue in the absence of insulin to a level approaching the rate obtained in the medium in the presence of insulin. This effect is not readily reversed by addition of chloride ions to the medium after the incubation period. Chloride ions, therefore, appear necessary for the maintenance of insulin responsiveness of the system.During incubation in tris chloride, there is a rapid appearance of significant quantities of sodium and potassium into the incubation medium. This ionic redistribution did not influence significantly the normal basal glucose uptake or its stimulation by insulin. The presence of the hormone also did not influence the rate of appearance of these ions in the incubation medium. It is suggested that the sodium ions appearing in the incubation medium are derived primarily from the intercellular space.The stimulation of glucose uptake by amorphous (zinc-low) insulin in a zinc-free tris chloride medium was similar to that observed in a zinc-containing system. The uptake of zinc ions into the tissues was not markedly influenced by insulin.As the pH of the incubation medium is increased from 6 to 7, glucose uptake by insulin-treated tissue increased while that of tissue without insulin remained constant. In the region from pH 7 to 8, the uptake by insulin-stimulated tissue remained maximal while the uptake by tissue without insulin increased to this level, thus abolishing the insulin effect. The effects of pH on the basal glucose uptake were not reversed by readjusting the pH after the incubation period.There was no marked difference in the rate of utilization of α- and β-glucose by epididymal fat tissue in the presence or absence of insulin under conditions where two- or threefold differences in rate would have been expected if one of the forms was specifically utilized by the system.Lineweaver-Burk plots of glucose uptake as a function of glucose concentration in the presence and absence of insulin indicate the action of insulin is primarily in increasing the uptake of glucose by epididymal fat tissue at low glucose concentrations. The apparent Km of the system in the absence of insulin is about 60 mM, and in the presence of this hormone is 7 mM. The maximal glucose uptake, about 2 μmoles/100 mg. tissue per hour, is obtained at high levels of glucose and is not significantly affected by insulin. These data are consistent with a role of insulin on a rate-limiting step in the process (probably glucose transport). It is suggested that various treatments of the tissue which are reported here to increase the glucose uptake in the absence of insulin probably affect the permeability of the cells.  相似文献   

6.
7.
Isoleucine, a branched chain amino acid, plays an important role in the improvement of glucose metabolism as evidenced by the increase of insulin-independent glucose uptake in vitro. This study evaluated the effect of isoleucine on glucose uptake and oxidation in fasted rats and on gluconeogenesis in vivo and in vitro. Oral administration of isoleucine decreased the plasma glucose level by 20% and significantly increased muscle glucose uptake by 71% without significant elevation of the plasma insulin level compared with controls at 60 min after administration. Furthermore, expiratory excretion of 14CO2 from [U-14C]glucose in isoleucine-administered rats was increased by 19% compared with controls. Meanwhile, isoleucine decreased AMP levels in the liver but did not affect hepatic glycogen synthesis. Under insulin-free conditions, isoleucine significantly inhibited glucose production when alanine was used as a glucogenic substrate in isolated hepatocytes. This inhibition by isoleucine was also associated with a decline in mRNA levels for phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase) and a decreased activity of G6Pase in isolated hepatocytes. These findings suggest that a reduction of gluconeogenesis in liver, along with an increase of glucose uptake in the muscle, is also involved in the hypoglycemic effect of isoleucine. In conclusion, isoleucine administration stimulates both glucose uptake in the muscle and whole body glucose oxidation, in addition to depressing gluconeogenesis in the liver, thereby leading to the hypoglycemic effect in rats.  相似文献   

8.
Chronic total parenteral nutrition (TPN) markedly augments net hepatic glucose uptake (NHGU). This adaptive increase is impaired by an infection despite accompanying hyperinsulinemia. In the nonadapted state, NHGU is dependent on the prevailing glucose levels. Our aims were to determine whether the adaptation to TPN alters the glucose dependence of NHGU, whether infection impairs this dependence, and whether insulin modulates the glucose dependence of NHGU during infection. Chronically catheterized dogs received TPN for 5 days. On day 3 of TPN, dogs received either a bacterial fibrin clot to induce a nonlethal infection (INF, n = 9) or a sterile fibrin clot (Sham, n = 6). Forty-two hours after clot implantation, somatostatin was infused. In Sham, insulin and glucagon were infused to match the level seen in Sham (9 +/- 1 microU/ml and 23 +/- 4 pg/ml, respectively). In infected animals, either insulin and glucagon were infused to match the levels seen in infection (25 +/- 2 microU/ml and 101 +/- 15 pg/ml; INF-HI; n = 5) or insulin was replaced to match the lower levels seen in Sham (13 +/- 2 microU/ml), whereas glucagon was kept elevated (97 +/- 9 pg/ml; INF-LO; n = 4). Then a four-step (90 min each) hyperglycemic (120, 150, 200, or 250 mg/dl) clamp was performed. NHGU increased at each glucose step in Sham (from 3.6 +/- 0.6 to 5.4 +/- 0.7 to 8.9 +/- 0.9 to 12.1 +/- 1.1 mg.kg(-1).min(-1)); the slope of the relationship between glucose levels and NHGU (i.e., glucose dependence) was higher than that seen in nonadapted animals. Infection impaired glucose-dependent NHGU in both INF-HI (1.3 +/- 0.4 to 2.9 +/- 0.5 to 5.5 +/- 1.0 to 7.7 +/- 1.6 mg.kg(-1).min(-1)) and INF-LO (0.5 +/- 0.7 to 2.2 +/- 0.6 to 4.2 +/- 1.0 to 5.8 +/- 0.8 mg.kg(-1).min(-1)). In summary, TPN augments glucose-dependent NHGU, the presence of infection decreases glucose-dependent NHGU, and the accompanying hyperinsulinemia associated with infection does not sustain the glucose dependence of NHGU.  相似文献   

9.
Changes in insulin-stimulated glucose metabolism were studied in young and aged subjects, subjects with impaired glucose tolerance, and patients with NIDDM by means of the glucose clamp technique. The diabetic group includes obese and non-obese patients treated without insulin and non-obese patients treated with insulin. The glucose disposal rate (GDR) was decreased in aged subjects (5.8 +/- 0.4 mg/kg/min) compared with young controls (7.4 +/- 0.3 mg/kg/min). In patients with IGT, it was further decreased to 3.6 +/- 0.5 mg/kg/min, which was comparable to the rate in NIDDM without insulin treatment (3.3 +/- 0.4 mg/kg/min). There were no differences in the GDR between obese (3.0 +/- 0.3 mg/kg/min) and non-obese (3.4 +/- 0.6 mg/kg/min) diabetic patients. In insulin-treated diabetic patients, GDR ranged widely, but the mean value was partially normalized (5.2 +/- 0.9 mg/kg/min). In the diabetic group, no correlation was observed between fasting blood glucose and GDR. These results suggest that in the course of developing NIDDM, a decrease in insulin-stimulated glucose uptake precedes a rise in fasting blood glucose. Thus, as previously reported for Caucasian NIDDM patients, resistance to insulin-stimulated glucose uptake may be one of the basic defects in Japanese patients with NIDDM. The degree of glycemia, however, is not directly related to the magnitude of the defect in insulin action.  相似文献   

10.
There is considerable evidence to suggest that electrical stimulation (ES) activates glucose uptake in rodent skeletal muscle. It is, however, unknown whether ES can lead to similar metabolic enhancement in humans. We employed low-frequency ES through surface electrodes placed over motor points of quadriceps femoris muscles. In male subjects lying in the supine position, the highest oxygen uptake was obtained by a stimulation pattern with 0.2-ms biphasic square pulses at 20 Hz and a 1-s on-off duty cycle. Oxygen uptake was increased by approximately twofold throughout the 20-min stimulation period and returned to baseline immediately after stimulation. Concurrent elevation of the respiratory exchange ratio and blood lactate concentration indicated anaerobic glycogen breakdown and utilization during ES. Whole body glucose uptake determined by the glucose disposal rate during euglycemic clamp was acutely increased by 2.5 mg. kg(-1). min(-1) in response to ES and, moreover, remained elevated by 3-4 mg. kg(-1). min(-1) for at least 90 min after cessation of stimulation. Thus the stimulatory effect of ES on whole body glucose uptake persisted not only during, but also after, stimulation. Low-frequency ES may become a useful therapeutic approach to activate energy and glucose metabolism in humans.  相似文献   

11.
The kinetics of glucose and leucine uptake in attached and free-living prokaryotes in two types of microcosms with different nutrient qualities were compared. Microcosm type M1, derived from unaltered seawater, and microcosm type M2, from phytoplankton cultures, clearly expressed different kinetic parameters (Vmax/cell and K' m). In aggregates with low cell densities (M1 microcosm), the attached prokaryotes benefited from attachment as reflected in the higher potential uptake rates, while in aggregates with high cell densities (M2 microcosm) differences in the potential uptake rates of attached and free-living prokaryotes were not evident. The aging process and the chemical changes in aggregates of M2 microcosms were followed for 15-20 days. The results showed that as the aggregates aged and prokaryotic abundance increased, attached prokaryotes decreased their potential uptake rate and their K' m for substrate. This suggests an adaptive response by attached prokaryotes when aggregates undergo quantitative and qualitative impoverishment.  相似文献   

12.
Since in the usual perfusion of isolated rat liver via the portal vein an insulin-dependent increase of hepatic glucose uptake could not be demonstrated, the possibility was considered that hepatic glucose uptake might not be a function of the absolute concentration of this substrate but of its concentration gradient between the portal vein and the hepatic artery. Therefore a new method was established for the simultaneous perfusion of isolated rat liver via both the hepatic artery (20-35% flow) and the portal vein (80-65% flow). When glucose was offered in a concentration gradient, 9.5 mM in the portal vein and 6 mM in the hepatic artery, insulin given via both vessels caused a shift from net glucose release to uptake. This insulin-dependent shift was not observed when glucose was offered without a gradient or with an inverse gradient, 6 mM in the portal vein and 9.5 mM in the hepatic artery. Using a portal-arterial glucose gradient as a signal the liver might be able to differentiate between endogenous and exogenous glucose.  相似文献   

13.
14.
The effect of noradrenaline on oxygen uptake, on periportal and perivenous oxygen tension at surface acini, on microcirculation and on glucose output were studied in isolated rat livers perfused at constant flow with Krebs-Henseleit-hydrogen carbonate buffer containing 5mM glucose and 2mM lactate. Noradrenaline at 1 microM concentration caused a decrease in oxygen uptake, while at 0.1 microM it led to an increase. Both high and low doses of noradrenaline decreased the tissue surface oxygen tension in periportal and - after a transient rise - in perivenous areas. Noradrenaline at an overall constant flow caused an increase of portal pressure and an alteration of the intrahepatic distribution of the perfusate: at the surface of the liver and in cross sections infused trypan blue led to only a slightly heterogeneous staining after a low dose of noradrenaline but to a clearly heterogeneous staining after a high dose. Both high and low doses of noradrenaline stimulated glucose release. All effects could be inhibited by the alpha-blocking agent phentolamine. In conclusion, control of hepatic oxygen consumption by circulating noradrenaline is a complex result of opposing hemodynamic and metabolic components: the microcirculatory changes inhibit oxygen uptake; they dominate after high catecholamine doses. The metabolic effects include a stimulation of oxygen utilization; they prevail at low catecholamine levels. The noradrenergic control of glucose release is also very complex, involving direct, metabolic and indirect, hemodynamic components.  相似文献   

15.
1. Livers from fed male rats were perfused in situ in a non-recirculating system with whole rat blood containing acetate at six concentrations, from 0.04 to 1.5 μmol/ml, to cover the physiological range encountered in the hapatic portal venous blood in vivo. 2. Below a concentration of 0.25 μmol/ml there was net production of acetate by the liver, while above it there was ner uptake with a fractional extraction of 40%. 3.No relationship was observed between blood [acetate] and hepatic ketogenesis, the ration [3-hydroxybutyrate]/[acetoacetate] or glucose output, either at low fatty acid concentration s or during oleate infusion. 4. Following the increase in serum fatty acid concentration, induced by oleate infusion, there were suquential incresase in ketogenesis and the ratio of [3-hydroxybutyrate]/[acetoacetate] while glucose output rose and lactate uptake fell significantly after in redox state. 5. There was a highly significant negative correlation between blood [acetate] and hepatic lactate uptake during oleate infusion. At the highest acetate concentration of 1.5 μmol/ml there was a small net hepatic lactate output. After oleate infusion ceased, lactate uptake increased, but the negative correlation between blood [acetate] and hepatic lactate uptake persisted. 6. Livers were also perfused with iether [1-14C]acetate or [U-14C]lactate at a concentration of acetate of either 0.3 or 1.3 μmol/ml of blood. With [1-14C]acetate, most of the radioactivity was recovered as fatty acids at the lower concentration of blood acetate. At the higher blood [acetate] a considerably smaller proportion of the radioactivity was recovered in lipids. With [U-14C]lactate the reverse pattern obtained i.e., recovery was greater at the high concentration of acetate and fell at the low concentration. Fatty acid biosynthesis, measured with 3H2O, was stimulated from 2.4 to 6.6 μmol of fatty acid/g of liver per h by high blood [acetate] although the contribution of (acetate+lactate) to synthesis remained constant at 33–38% of the total. 7. These results emphasize the important role of the liver in regulating blood acetate concentrations and indicate that it can be major hepatic substrate. Acetate taken up by the liver appeared to compete directly with lactate, for lipogenesis and metabolism and acetate uptake was inhibited by raised bloodd [lactate].  相似文献   

16.
Active Cl- uptake by Chlorella fusca was examined by using 36Cl as a label. Under light/air conditions chloride influx from a 2.4·10-5 M solution was 4.0±0.04 nmol m-2s-1. After 70±10 min a stationary 380±40 fold accumulation was reached. In dark/air and dark/argon influx and accumulation were reduced to 25±6%, respectively, 5±1.5% of the light/air control. Cl- uptake had a broad optimum around pH 7 and showed saturation kinetics with a K M of 1.25·10-5 M and a v max of 7.0 nmol m-2s-1 in light/air. Br- inhibited Cl- uptake strongly, J-, ClO 4 - , SO 4 2- , and NO 3 - had no inhibitory effect. Inhibitor studies with carbonyl cyanide m-chlorophenylhydrazone and N,N-dicyclohexylcarbodiimide resulted in a good correlation between Cl- uptake and ATP level. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea and darkness reduced transport activity without affecting the ATP level.The magnitudes of the pH gradient and the membrane potential across the cell membrane were determined and/or estimated under different conditions. It could be shown that in Chlorella Cl- transport cannot proceed via secondary active H+/Cl- cotransport. In addition, 2H+/Cl- cotransport seems unlikely for energetic reasons. On the basis of the results of this and the following study, a primary active ATP-driven Cl-/OH- exchange pump is proposed.Abbreviations CCCP carbonyl cyanide m-chlorophenylhyd razone - DCCD N,N-dicyclohexylcarbodiimide - DCMU 3-(3.4-dichlorophenyl)-1.1-dimethylurea - DMO 5,5-dimethyloxazolidine-2,4-dione - Hepes N-2-hydroxyethylpiperazine-N ethane-sulfonic acid - POPOP 1.4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene - PPO 2.5-diphenyloxazole To whom correspondence should be addressed  相似文献   

17.
18.
Parallel measurements of breath-by-breath oxygen uptake, cardiac output (Doppler technique), blood pressure (Finapres technique) and heart rate were performed in nine subjects during cycle ergometer exercise in the upright and supine positions. Transients were monitored during power steps starting from and leading to either rest or lower levels of exercise intensity. Oxygen uptake (VO2) and cardiac output kinetics were markedly faster than in all other conditions when exercise was started from rest. In contrast to exercise-exercise on steps, the computed arteriovenous difference in O2 content increased almost immediately in this situation, indicating that not only the additional energy expenditure due to the acceleration of the flywheel but also an increased venous admixture from non-exercising parts of the body contributed to the early kinetics. The off kinetics generally showed a more uniform pattern and did not simply mirror the on transients. The present findings indicate that transitions from rest should be avoided when muscle VO2 kinetics are to be assessed on the basis of VO2 measurements at the mouth.  相似文献   

19.
20.
Our laboratory has recently demonstrated that low-frequency electrical stimulation (ES) of quadriceps muscles alone significantly enhanced glucose disposal rate (GDR) during euglycemic clamp (Hamada T, Sasaki H, Hayashi T, Moritani T, and Nakao K. J Appl Physiol 94: 2107-2112, 2003). The present study is further follow-up to examine the acute metabolic effects of ES to lower extremities compared with voluntary cycle exercise (VE) at identical intensity. In eight male subjects lying in the supine position, both lower leg (tibialis anterior and triceps surae) and thigh (quadriceps and hamstrings) muscles were sequentially stimulated to cocontract in an isometric manner at 20 Hz with a 1-s on-off duty cycle for 20 min. Despite small elevation of oxygen uptake by 7.3 +/- 0.3 ml x kg(-1) x min(-1) during ES, the blood lactate concentration was significantly increased by 3.2 +/- 0.3 mmol/l in initial period (5 min) after the onset of the ES (P < 0.01), whereas VE showed no such changes at identical oxygen uptake (7.5 +/- 0.3 ml x kg(-1) x min(-1)). ES also induced enhanced whole body carbohydrate oxidation as shown by the significantly higher respiratory gas exchange ratio than with VE (P < 0.01). These data indicated increased anaerobic glycolysis by ES. Furthermore, whole body glucose uptake determined by GDR during euglycemic clamp demonstrated a significant increase during and after the cessation of ES for at least 90 min (P < 0.01). This post-ES effect was significantly greater than that of the post-VE period (P < 0.01). These results suggest that ES can substantially enhance energy consumption, carbohydrate oxidation, and whole body glucose uptake at low intensity of exercise. Percutaneous ES may become a therapeutic utility to enhance glucose metabolism in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号