首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice were infected with Listeria monocytogenes and Lyt-2+ T cell clones capable of lysing Ag-primed bone marrow macrophages were established. In accordance with earlier findings obtained at the population level, some T cell clones were identified which lysed bone marrow macrophages of different MHC type provided the relevant Ag was present. This unusual target cell recognition was further analyzed using a T3+, L3T4-, Lyt-2+, F23+, KJ16+ T cell clone, designated L-28. Target cell lysis by this clone was Ag specific, apparently non-MHC restricted. In contrast, YAC cells and P815 cells were not lysed by clone L-28. However, lysis of irrelevant targets could be induced by anti-T3, F23, or KJ16 mAb. Furthermore, Ag-specific lysis was blocked by anti-Lyt-2 mAb and by F(ab)2 fragments of F23 mAb. In addition to its cytolytic activity, clone L-28 produced IFN-gamma after co-stimulation with accessory cells, Ag, and rIL-2 and conferred significant protection on recipient mice when given together with rIL-2. These data suggest that non-MHC-restricted Lyt-2+ killer cells generated during listeriosis are cytolytic T lymphocytes that interact with their target Ag via the T cell receptor/T3 complex and the Lyt-2 molecule and, furthermore, that these cells play a role in anti-listerial resistance. The possible relevance of IFN-gamma secretion and target cell lysis for antibacterial protection is discussed.  相似文献   

2.
Presentation of bacteria-derived CD8 T cell epitopes by dendritic cells (DC) requires either their direct infection or that DC acquire and cross-present Ags from other infected cells. We found that cross-presentation of Listeria monocytogenes-derived CD8 T cell epitopes was much stronger than direct Ag presentation by infected murine DC. Cross-presentation of Listeria-derived CD8 T cell epitopes showed unique physiological requirements. It was dependent upon the delivery of unstable bacterial translation products by infected, but still viable, Ag donor cells. Cross-presentation was enhanced both when unstable translation products in infected Ag donor cells were protected from proteasomal degradation and when the production of misfolded bacterial proteins was increased. The requirement of unstable translation products for cross-presentation may represent a novel pathway that functions to focus the CD8 T cell response toward epitopes derived from newly synthesized proteins.  相似文献   

3.
There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8(+) T cells in host defense. However, although it has been shown that memory CD8(+) T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8(+) T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8(+) T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α(-) DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8(+) T cell effectors with cytolytic function. As CD8α(-) DCs are poor cross-presenters, this may represent the main mechanism by which CD8α(-) DCs present exogenously encountered Ag to CD8(+) T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.  相似文献   

4.
Secreted or nonsecreted Ag expressed by recombinant Listeria monocytogenes can prime CD8 T cells. However, Ag-specific memory CD8 T cells confer protection against bacteria secreting Ag, but not against bacteria expressing the nonsecreted form of the same Ag. This dichotomy may be explained by a long-standing hypothesis that nonsecreted Ags are less effective than secreted Ags at inducing a protective immune response at the onset of infection. We tested this hypothesis by examining whether these two different forms of Ag induce different primary and secondary CD8 T cell responses. The primary responses to secreted and nonsecreted Ags expanded and contracted almost synchronously, although the responses to nonsecreted Ags were of lower magnitude. These results demonstrate that the kinetics of the CD8 T cell response are similar regardless of whether Ag is accessible to the endogenous MHC class I pathway or can only be presented through cross-presentation. No differences were detected in the CD8 T cell recall response to L. monocytogenes expressing secreted or nonsecreted Ags. Nonsecreted Ags are as effective as secreted Ags at the induction of a rapid recall response by memory CD8 T cells. Thus, the inability of nonsecreted bacterial proteins to serve as protective Ags cannot be attributed to a defective CD8 T cell response.  相似文献   

5.
Immunoreactivity of a 10-kDa antigen of Mycobacterium tuberculosis.   总被引:11,自引:0,他引:11  
Identification of Ag of Mycobacterium tuberculosis recognized by T cells is essential to understanding the pathogenesis of tuberculosis and mechanism(s) of resistance to infection. Previous studies evaluating the immunoreactivity of nitrocellulose transfers of M. tuberculosis Ag separated by SDS-PAGE indicated that a high proportion of M. tuberculosis-reactive T cell lines proliferate in response to a 10-kDa Ag. We therefore purified this Ag from M. tuberculosis culture filtrates and evaluated its immunoreactivity in patients with tuberculous infection. Proliferative responses of PBMC to the 10-kDa Ag were similar to those induced by whole M. tuberculosis and greater than those elicited by other proteins isolated from culture filtrate. Furthermore, in patients with tuberculous pleuritis, proliferative responses to the 10-kDa Ag were higher in pleural fluid mononuclear cells than in PBMC, indicating that T cell reactivity to this Ag is enhanced at the site of disease. The first 15 amino acids of the 10-kDa Ag were identical to those defined previously for Bacillus Calmette-Guérin-a (BCG-a), and a T cell clone recognized the 10-kDa Ag and a peptide of BCG-a, indicating that the 10-kDa Ag corresponds to BCG-a. This Ag elicited IFN-gamma production by pleural fluid mononuclear cells and by PBMC from healthy tuberculin reactors, suggesting that the 10-kDa Ag can enhance macrophage activation and resistance to mycobacterial infection. Our findings indicate that the 10-kDa Ag of M. tuberculosis is highly immunoreactive and should be evaluated for its capacity to elicit protective immunity.  相似文献   

6.
In vitro expanded T cell lines were used to determine whether antigen-specific cytolytic T lymphocytes are generated after infection with the intracellular bacterium, Listeria monocytogenes. Spleen cells from infected mice were cultured in the presence of syngeneic accessory cells, listerial antigen, and interleukin 2 containing supernatants. Cell lines were greater than 98% Thy-1+, L3T4-, Lyt-2+. Bone-marrow macrophages were used as target cells in two in vitro cytolytic assay systems. The Lyt-2+ T cells killed bone marrow macrophages only when infected with L. monocytogenes as assessed in a 4-hr 51Cr release assay and in an 18-hr neutral red uptake assay. Cytolysis was blocked by anti-LFA-1 and anti-Lyt-2 monoclonal antibodies. These cytolytic T cells produced interferon-gamma after co-stimulation with antigen, accessory cells, and recombinant interleukin 2. Bone marrow macrophages infected with Mycobacterium bovis were not killed by T cells from L. monocytogenes-infected mice but by T cell lines from M. bovis-infected mice, indicating that cytolysis was antigen specific. L. monocytogenes-infected target cells of different haplotype were lysed by the Lyt-2+ T cells. By using a low cell density split culture system, antigen-specific, H-2-restricted cytolytic T cells could be identified. These findings demonstrate that during infection with intracellular bacteria, Lyt-2+ T cells with cytolytic activity are generated that may be involved in antibacterial protection.  相似文献   

7.
8.
To identify the target proteins of CD8+ T lymphocytes we have explored the cytolytic immune responses of 12 rhesus macaques experimentally infected with the simian immunodeficiency virus (SIVmac). Target cells were autologous B cell lines presenting SIVmac proteins after infection with recombinant vaccinia viruses. The eight following proteins were studied: ENV, POL, GAG, NEF, VIF, REV, TAT, and VPX. Macaque PBMC stimulated with Con A and expanded in T cell growth factor-containing medium produced cell lines with cytolytic activity in the majority of infected animals (9/12). The structural proteins ENV, POL, and GAG were recognized by cell lines derived from nine, eight, and six macaques, respectively. The small regulatory proteins also represented efficient CTL targets, a specific activity being detected against NEF (8/12), REV (7/12), VPX (7/12), TAT (6/12), and VIF (5/12). Most cytotoxic responses (except those directed against ENV) were mediated by CD8 cells and were MHC class I restricted. Limiting dilution analysis allowed us to quantify the frequency of CTL precursors and confirmed the high immunogenicity of multiple SIV proteins. Three different patterns of response could be defined: six animals were able to recognize at least six of the eight tested target proteins, two of them reacting with all eight target proteins. The other three responder macaques reacted only against a few SIV proteins, whereas no cytotoxic activity was detected in the three remaining infected macaques and in the nine negative controls. The six animals responding against multiple proteins were still healthy 12 to 22 mo after infection with two of them presenting a decrease in circulating CD4 cells concurrently to the disappearance of the CTL response. Conversely, three nonresponder or low responder macaques developed an overt disease after 4 to 12 mo, and two other presented a very low level of CD4 cells, suggesting that the pattern of response may be of prognostic value.  相似文献   

9.
The development of protective immunity against many intracellular bacterial pathogens commonly requires sublethal infection with viable forms of the bacteria. Such infection results in the in vivo activation of specific cell-mediated immune responses, and both CD4+ and CD8+ T lymphocytes may function in the induction of this protective immunity. In rodent models of experimental infection with Listeria monocytogenes, the expression of protective immunity can be mediated solely by the immune CD8+ T cell subset. One major target Ag of Listeria-immune CD8+ T cells is the secreted bacterial hemolysin, listeriolysin O (LLO). In an attempt to generate a subunit vaccine in this experimental disease model, eukaryotic plasmid DNA expression vectors containing genes encoding either the wild-type or modified forms of recombinant LLO were generated and used for genetic vaccination of naive mice. Results of these studies indicate that the intramuscular immunization of mice with specifically designed plasmid DNA constructs encoding recombinant forms of LLO stimulates peptide-specific CD8+ immune T cells that exhibit in vitro cytotoxic activity. More importantly, such immunization can provide protective immunity against a subsequent challenge with viable L. monocytogenes, demonstrating that this experimental approach may have direct application in prevention of acute disease caused by intracellular bacterial pathogens.  相似文献   

10.
Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ~10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy.  相似文献   

11.
The inducible costimulator protein (ICOS) was recently identified as a costimulatory molecule for T cells. Here we analyze the role of ICOS for the acquired immune response of mice against the intracellular bacterium Listeria monocytogenes. During oral L. monocytogenes infection, low levels of ICOS expression were detected by extracellular and intracellular Ab staining of Listeria-specific CD4(+) and CD8(+) T cells. Blocking of ICOS signaling with a soluble ICOS-Ig fusion protein markedly impaired the Listeria-specific T cell responses. Compared with control mice, the ICOS-Ig treated mice generated significantly reduced numbers of Listeria-specific CD8(+) T cells in spleen and liver, as determined by tetramer and intracellular cytokine staining. In contrast, the specific CD8(+) T cell response in the intestinal mucosa did not appear to be impaired by the ICOS-Ig treatment. Analysis of the CD4(+) T cell response revealed that ICOS-Ig treatment also affected the specific CD4(+) T cell response. When restimulated with listerial Ag in vitro, reduced numbers of CD4(+) T cells from infected and ICOS-Ig-treated mice responded with IFN-gamma production. The impaired acquired immune response in ICOS-Ig treated mice was accompanied by their increased susceptibility to L. monocytogenes infection. ICOS-Ig treatment drastically enhanced bacterial titers, and a large fraction of mice succumbed to the otherwise sublethal dose of infection. Thus, ICOS costimulation is crucial for protective immunity against the intracellular bacterium L. monocytogenes.  相似文献   

12.
13.
Protective immunity to the intracellular bacterial pathogen, Listeria monocytogenes, is mediated by a vigorous T cell response. In particular, CD8(+) cytolytic T cells provide essential effector function in the clearance of bacterial infection. The cytoplasmic entry of Listeria facilitated by listeriolysin O is an essential feature not only of the bacteria's virulence, but of the ability of the bacteria to elicit protective immunity in the host. To determine how cytoplasmic entry of Listeria regulates the development of protective immunity, we examined the effects of this process on the maturation of murine dendritic cells (DC) and on their ability to prime naive CD8(+) T cell responses. Costimulatory molecules (CD40, CD80, and CD86) were induced by listerial infection only when the bacteria invaded the cytoplasm. In addition, the production of IL-12, IL-10, IL-6, and TNF-alpha was most efficiently triggered by cytosolic Listeria. Naive T cells primed by peptide-loaded DC infected with either wild-type or nonhemolytic mutant Listeria proliferated equivalently, but a much larger proportion of those primed by wild-type Listeria monocytogenes produced IFN-gamma. Costimulatory molecules induced by cytosolic entry regulated T cell proliferation and, as a result, the number of functional T cells generated. DC-produced cytokines (specifically IL-12 and IL-10) were the major factors determining the proportion of T cells producing IFN-gamma. These data highlight the requirement for listerial cytoplasmic invasion for the optimal priming of T cell cytokine production and attest to the importance of this event to the development of protective CTL responses to this pathogen.  相似文献   

14.
T cell-dependent, cell-mediated immune mechanisms have been shown to contribute to resistance against malaria. Because the identity of plasmodial Ag responsible for the activation of these protective immune responses remains unknown, a major step in isolating these potential immunizing agents will be the development of adequate screening procedures designed to identify important T cell Ag. This study focused on the isolation of protective T cell clones that may play a pivotal role in this process. A T cell clone designated CTR2.1 and two subclones derived from it adoptively transferred protection to athymic nude mice infected with Plasmodium chabaudi adami, a murine malarial parasite known to be recognized by protective thymus-dependent immune mechanisms. The protective T cell clone displayed a L3T4+, Lyt-2- surface phenotype and secreted both IFN-gamma and IL-2 after stimulation with solubilized parasites in vitro. This is the first report of results demonstrating a cloned T cell line capable of providing adoptive protection against malaria in vivo. More importantly, CTR2.1 and other protective T cell clones may provide for the identification of plasmodial antigenic epitopes recognized by important cell-mediated immune mechanisms during acute malarial infection.  相似文献   

15.
In our previous work on the idiotypic network in the rat model of schistosomiasis we showed that immunization with an IgE mAb specific for 26/56-kDa parasitic Ag resulted in the production of anti-anti-Id antibodies of both the IgG and IgE classes. Further studies demonstrated that anti-Ab2 T cell lines, obtained by immunization with Ab2 antibodies, functioned as conventional Th cells; they were MHC-restricted and required APC to proliferate in the presence of the native schistosomula Ag and the Ab2 antibodies. We report the involvement of these anti-Ab2 cells in the regulation of protective immunity. The transfer of long term culture anti-Ab2 T cell lines into LOU/M rats, followed by a challenge infection by Schistosoma mansoni 1 day after the cell transfer led to a slight increase in the worm burden. On the contrary, the transfer of anti-Ab2 T cells 90 days before S. mansoni infection induced a significant reduction of the worm burden (up to 57%). T cells recovered from the protected rats were stimulated by the native schistosomula Ag as well as by tryptic fragments of IgG isolated from the Ab2 sera, in the presence of irradiated thymic cells as APC. We also analyzed the humoral response developed by the rats after transfer with the anti-Ab2 T cell lines. The sera induced various inflammatory cells into cytotoxic effectors against the larvae of S. mansoni, arguing for the presence of functional IgE in the sera. Moreover, when these sera were passively transferred into rats infected 1 day later, a significant reduction of the worm burden was observed. However, antibody-dependent cytotoxic mechanisms efficient 10 days after the anti-Ab2 T cell transfer did not correlate with the protective immunity which required a 90-day delay to be established. These data suggest that the protective immunity induced by the anti-Ab2 cells is supported both by the cellular and humoral components and that in a future vaccinating strategy the idiotypic network may play a crucial role.  相似文献   

16.
It has been previously shown that unstimulated NK cells cannot preferentially lyse adenovirus serotypes 2 and 5-infected human cells. In this study, the ability of IFN to promote the selective NK cell-mediated lysis of adenovirus-infected human cells was determined. The relationship between target cell susceptibility to NK cell-mediated killing and class I Ag expression was also analyzed through the use of adenovirus serotype 2 and 5 mutants that do not make the adenovirus early region 3 19-kDa class I binding protein. IFN induced the selective lysis of adenovirus serotype 2 and 5-infected human cells by activating NK cells (IFN-alpha) and protecting uninfected, but not adenovirus-infected cells, from NK cell-mediated lysis (IFN-gamma). IFN-gamma increased the expression of class I Ag on the surface of cells infected with the adenovirus early region 3 deletion mutants, dl327 or dl801, to a level equal to or greater than that expressed on uninfected cells. Despite the increased expression of class I Ag, IFN-gamma could not protect these adenovirus-infected cells from NK cell-mediated lysis. Thus, dl327 or dl801 infection prevented IFN-gamma's induction of cytolytic resistance to NK cell-mediated killing but left IFN-gamma's induction of class I Ag intact. Surface class I Ag levels were substantially higher on IFN-gamma-treated, dl327-, and dl801-infected cells in comparison to cells infected with wild type adenovirus serotype 5. Again, higher target cell levels of class I Ag did not correlate with increased resistance to NK cell-mediated lysis because there was equivalent NK cell-mediated killing of IFN-gamma-treated adenovirus serotype 5-, dl327-, or dl801-infected cells. Thus, IFN-gamma only protects uninfected cells from NK cell-mediated killing, irrespective of target class I Ag levels, and thereby concentrates NK lytic activity on just adenovirus-infected cells. These data demonstrate that IFN-gamma's ability to protect target cells from NK cell-mediated cytolysis is unrelated to IFN-gamma's induction of surface class I MHC Ag.  相似文献   

17.
Cytolytic T-lymphocyte (CTL) activity specific for respiratory syncytial (RS) virus was investigated after intranasal infection of mice with RS virus, after intraperitoneal infection of mice with a recombinant vaccinia virus expressing the F glycoprotein, and after intramuscular vaccination of mice with Formalin-inactivated RS virus or a chimeric glycoprotein, FG, expressed from a recombinant baculovirus. Spleen cell cultures from mice previously infected with live RS virus or the F-protein recombinant vaccinia virus had significant CTL activity after one cycle of in vitro restimulation with RS virus, and lytic activity was derived from a major histocompatibility complex-restricted, Lyt2.2+ (CD8+) subset. CTL activity was not restimulated in spleen cells from mice that received either the Formalin-inactivated RS virus or the purified glycoprotein, FG. The protein target structures for recognition by murine CD8+ CTL were identified by using target cells infected with recombinant vaccinia viruses that individually express seven structural proteins of RS virus. Quantitation of cytolytic activity against cells expressing each target structure suggested that 22K was the major target protein for CD8+ CTL, equivalent to recognition of cells infected with RS virus, followed by intermediate recognition of F or N, slight recognition of P, and no recognition of G, SH, or M. Repeated stimulation of murine CTL with RS virus resulted in outgrowth of CD4+ CTL which, over time, became the exclusive subset in culture. Murine CD4+ CTL were highly cytolytic for RS virus-infected cells, but they did not recognize target cells infected with any of the recombinant vaccinia viruses expressing the seven RS virus structural proteins. Finally, the CTL response in peripheral blood mononuclear cells of adult human volunteers was investigated. The detection of significant levels of RS virus-specific cytolytic activity in these cells was dependent on at least two restimulations with RS virus in vitro, and cytolytic activity was derived primarily from the CD4+ subset.  相似文献   

18.
Recent studies have demonstrated that viral and bacterial infections can induce dramatic in vivo expansion of Ag-specific T lymphocytes. Although presentation of Ag is critical for activation of naive T cells, it is less clear how dependent subsequent in vivo T cell proliferation and memory generation are upon Ag. We investigated T cell expansion and memory generation in mice infected alternately with strains of Listeria monocytogenes that contained or lacked an immunodominant, MHC class I-restricted T cell epitope. We found substantial differences in the responses of effector and memory T cells to inflammatory stimuli. Although effector T cells undergo in vivo expansion in response to bacterial infection in the absence of Ag, memory T cells show no evidence for such bystander activation. However, Ag-independent expansion of effector T cells does not result in increased memory T cell frequencies, indicating that Ag presentation is critical for effective memory T cell generation. Early reinfection of mice with L. monocytogenes before the maximal primary T cell response induces typical memory expansion, suggesting that the capacity for a memory T cell response exists within the primary effector population. Our findings demonstrate that T cell effector proliferation and memory generation are temporally overlapping processes with differing requirements for Ag.  相似文献   

19.
Encounter with Ag during chronic infections results in the generation of phenotypically and functionally heterogeneous subsets of Ag-specific CD8 T cells. Influenza, an acute infection, results in the generation of similar CD8 T cell heterogeneity, which may be attributed to long-lived depots of flu Ags that stimulate T cell proliferation well after virus clearance. We hypothesized that the heterogeneity of flu-specific CD8 T cells and maintenance of T cell memory required the recruitment of new CD8 T cells to persistent depots of flu Ag, as was the case for flu-specific CD4 T cell responses. However, robust expansion and generation of highly differentiated cytolytic effectors and memory T cells only occurred when naive CD8 T cells were primed during the first week of flu infection. Priming of new naive CD8 T cells after the first week of infection resulted in low numbers of poorly functional effectors, with little to no cytolytic activity, and a negligible contribution to the memory pool. Therefore, although the presentation of flu Ag during the late stages of infection may provide a mechanism for maintaining an activated population of CD8 T cells in the lung, few latecomer CD8 T cells are recruited into the functional memory T cell pool.  相似文献   

20.
We have investigated virus-lymphocyte interactions by using cloned subpopulations of interleukin-2-dependent effector lymphocytes maintained in vitro. Cloned lines of H-2-restricted hapten- or virus-specific cytotoxic T lymphocytes (CTL) and alloantigen-specific CTL were resistant to productive infection by vesicular stomatitis virus (VSV). In contrast, cloned lines of natural killer (NK) cells were readily and persistently infected by VSV, a virus which is normally highly cytolytic. VSV-infected NK cells continued to proliferate, express viral surface antigen, and produce infectious virus. Furthermore, persistently infected NK cells showed no marked alteration of normal cellular morphology and continued to lyse NK-sensitive target cells albeit at a slightly but significantly reduced level. The persistence of VSV in NK cells did not appear to be caused by the generation of temperature-sensitive viral mutants, defective interfering particles, or interferon. Consequently, studies comparing the intracellular synthesis and maturation of VSV proteins in infected NK and mouse L cells were conducted. In contrast to L cells, in which host cell protein synthesis was essentially totally inhibited by infection, the infection of NK cells caused no marked diminution in the synthesis of host cell proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of viral proteins from infected cells showed that the maturation rate and size of VSV surface G glycoprotein were comparable in L cells and NK cells. Nucleocapsid (N) protein synthesis also appeared to be unaffected in NK cells. In contrast, the viral proteins NS and M appeared to be selectively degraded in NK cell extracts. Mixing experiments suggested that a protease in NK cells was responsible for the selective breakdown of VSV NS protein. Finally, VSV-infected NK cells were resistant to lysis by virus-specific CTL, suggesting that persistently infected NK cells may harbor virus and avoid cell-mediated immune destruction in an immunocompetent host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号