首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is generally assumed that a specific ubiquitin ligase (E3) links protein substrates to polyubiquitin chains containing a single type of isopeptide linkage, and that chains composed of linkages through Lys(48), but not through Lys(63), target proteins for proteasomal degradation. However, when we carried out a systematic analysis of the types of ubiquitin (Ub) chains formed by different purified E3s and Ub-conjugating enzymes (E2s), we found, using Ub mutants and mass spectrometry, that the U-box E3, CHIP, and Ring finger E3s, MuRF1 and Mdm2, with the E2, UbcH5, form a novel type of Ub chain that contains all seven possible linkages, but predominantly Lys(48), Lys(63), and Lys(11) linkages. Also, these heterogeneous chains contain forks (bifurcations), where two Ub molecules are linked to the adjacent lysines at Lys(6) + Lys(11), Lys(27) + Lys(29), or Lys(29) + Lys(33) on the preceding Ub molecule. However, the HECT domain E3s, E6AP and Nedd4, with the same E2, UbcH5, form homogeneous chains exclusively, either Lys(48) chains (E6AP) or Lys(63) chains (Nedd4). Furthermore, with other families of E2s, CHIP and MuRF1 synthesize homogeneous Ub chains on the substrates. Using the dimeric E2, UbcH13/Uev1a, they attach Lys(63) chains, but with UbcH1 (E2-25K), MuRF1 synthesizes Lys(48) chains on the substrate. We then compared the capacity of the forked heterogeneous chains and homogeneous chains to support proteasomal degradation. When troponin I was linked by MuRF1 to a Lys(48)-Ub chain or, surprisingly, to a Lys(63)-Ub chain, troponin I was degraded rapidly by pure 26S proteasomes. However, when linked to the mixed forked chains, troponin I was degraded quite poorly, and its polyUb chain, especially the forked linkages, was disassembled slowly by proteasome-associated isopeptidases. Because these Ring finger and U-box E3s with UbcH5 target proteins for degradation in vivo, but Lys(63) chains do not, cells probably contain additional factors that prevent formation of such nondegradable Ub-conjugates and that protect proteins linked to Lys(63)-Ub chains from proteasomal degradation.  相似文献   

2.
Ubiquitin (Ub) is a small protein highly conserved among eukaryotes and involved in practically all aspects of eukaryotic cell biology. Polymeric chains assembled from covalently-linked Ub monomers function as molecular signals in the regulation of a host of cellular processes. Our previous studies have shown that the predominant state of Lys48-linked di- and tetra-Ub chains at near-physiological conditions is a closed conformation, in which the Ub-Ub interface is formed by the hydrophobic surface residues of the adjacent Ub units. Because these very residues are involved in (poly)Ub interactions with the majority of Ub-binding proteins, their sequestration at the Ub-Ub interface renders the closed conformation of polyUb binding incompetent. Thus the existence of open conformation(s) and the interdomain motions opening and closing the Ub-Ub interface is critical for the recognition of Lys48-linked polyUb by its receptors. Knowledge of the conformational properties of a polyUb signal is essential for our understanding of its specific recognition by various Ub-receptors. Despite their functional importance, open states of Lys48-linked chains are poorly characterized. Here we report a crystal structure of the open state of Lys48-linked di-Ub. Moreover, using NMR, we examined interactions of the open state of this chain (at pH4.5) with a Lys48-linkage-selective receptor, the UBA2 domain of a shuttle protein hHR23a. Our results show that di-Ub binds UBA2 in the same mode and with comparable affinity as the closed state. Our data suggest a mechanism for polyUb signal recognition, whereby Ub-binding proteins select specific conformations out of the available ensemble of polyUb chain conformations. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

3.
Lys(63)-linked polyubiquitin (poly-Ub) chains appear to play a nondegradative signaling and/or recruitment role in a variety of key eukaryotic cellular processes, including NF-kappaB signal transduction and DNA repair. A protein heterodimer composed of a catalytically active ubiquitin-conjugating enzyme (Ubc13) and its homologue (Mms2 or Uev1a) forms a catalytic scaffold upon which a noncovalently associated acceptor Ub and thiolester-linked donor Ub are oriented such that Lys(63)-linked poly-Ub chain synthesis is facilitated. In this study, we have used (1)H-(15)N nuclear magnetic resonance spectroscopy, in combination with isothermal titration calorimetry, to determine the thermodynamics and kinetics of the interactions between various components of the Lys(63)-linked poly-Ub conjugation machinery. Mms2 and Uev1a interact in vitro with acceptor Ub to form 1/1 complexes with macroscopic dissociation constants of 98 +/- 15 and 213 +/- 14 microM, respectively, and appear to bind Ub in a similar fashion. Interestingly, the Mms2.Ubc13 heterodimer associates with acceptor Ub in a 1/1 complex and binds with a dissociation constant of 28 +/- 6 microM, significantly stronger than the binding of Mms2 alone. Furthermore, a dissociation constant of 49 +/- 7 nM was determined for the interaction between Mms2 and Ubc13 using isothermal titration calorimetry. In connection with previous structural studies for this system, the thermodynamics and kinetics of acceptor Ub binding to the Mms2.Ubc13 heterodimer described in detail in this study will allow for a more thorough rationalization of the mechanism of formation of Lys(63)-linked poly-Ub chains.  相似文献   

4.
Lys63-linked polyubiquitin chains participate in nonproteolytic signaling pathways, including regulation of DNA damage tolerance and NF-kappaB activation. E2 enzymes bound to ubiquitin E2 variants (UEV) are vital in these pathways, synthesizing Lys63-linked polyubiquitin chains, but how these complexes achieve specificity for a particular lysine linkage has been unclear. We have determined the crystal structure of an Mms2-Ubc13-ubiquitin (UEV-E2-Ub) covalent intermediate with donor ubiquitin linked to the active site residue of Ubc13. In the structure, the unexpected binding of a donor ubiquitin of one Mms2-Ubc13-Ub complex to the acceptor-binding site of Mms2-Ubc13 in an adjacent complex allows us to visualize at atomic resolution the molecular determinants of acceptor-ubiquitin binding. The structure reveals the key role of Mms2 in allowing selective insertion of Lys63 into the Ubc13 active site and suggests a molecular model for polyubiquitin chain elongation.  相似文献   

5.
6.
7.
The ubiquitin conjugating enzyme complex Mms2-Ubc13 plays a key role in post-replicative DNA repair in yeast and the NF-kappaB signal transduction pathway in humans. This complex assembles novel polyubiquitin chains onto yet uncharacterized protein targets. Here we report the crystal structure of a complex between hMms2 (Uev1) and hUbc13 at 1.85 A resolution and a structure of free hMms2 at 1.9 A resolution. These structures reveal that the hMms2 monomer undergoes a localized conformational change upon interaction with hUbc13. The nature of the interface provides a physical basis for the preference of Mms2 for Ubc13 as a partner over a variety of other structurally similar ubiquitin-conjugating enzymes. The structure of the hMms2-hUbc13 complex provides the conceptual foundation for understanding the mechanism of Lys 63 multiubiquitin chain assembly and for its interactions with the RING finger proteins Rad5 and Traf6.  相似文献   

8.
Protein ubiquitination involves a cascade of enzymatic steps where ubiquitin (Ub) is sequentially transferred as a thiolester intermediate from an E1 enzyme to an E2 enzyme and finally to the protein target with the help of a Ub-protein ligase. Protein ubiquitination brought about by the Ubc13-Mms2 (E2-E2) complex has a unique role in the cell, unrelated to protein degradation. The Mms2-Ubc13 heterodimer links Ub molecules to one another through an isopeptide bond between its own C-terminus and Lys-63 on another Ub. The role of Mms2 is to orient a target-bound Ub molecule such that its Lys-63 is proximal to the C-terminus of the Ub molecule that is covalently linked to the active site of Ubc13. To gain insight into the influence of protein dynamics on the affinity of Ub for Mms2, we have determined pico- to nanosecond time scale fluctuations of the main chain and methyl side chains of human Mms2 in the free and Ub-bound states using solution state (15)N and (2)H nuclear magnetic resonance relaxation measurements. Analysis of the relaxation data allows for a semiquantitative estimation of the conformational entropy change (TDeltaS(NMR)) for the main chain and side chain methyl groups of Mms2 upon binding Ub. The value of TDeltaS(NMR) for the main chain and side chain methyl groups of Mms2 is -8 +/- 2 and -2 +/- 2 kcal mol(-)(1), respectively. The experimental DeltaG(binding) for the Mms2.Ub complex is -6 kcal mol(-)(1). Estimation of DeltaG(binding) using an empirical structure-based approach that does not account for changes in main chain entropy yields a value of -17 +/- 2 kcal mol(-)(1). However, inclusion of TDeltaS(NMR) for the main chain of Mms2 increases the estimated DeltaG(binding) to -9 +/- 3 kcal mol(-)(1). Assuming that changes in Ub main chain dynamics contribute to TDeltaS(NMR) to the same extent as Mms2, the estimated DeltaG(binding) is further reduced to -1 +/- 4 kcal mol(-)(1), a value close to the experimental DeltaG(binding).  相似文献   

9.
Polyubiquitin chains on substrates are assembled through any of seven lysine residues or the N terminus of ubiquitin (Ub), generating diverse linkages in the chain structure. PolyUb linkages regulate the fate of modified substrates, but their abundance and function in mammalian cells are not well studied. We present a mass spectrometry-based method to measure polyUb linkages directly from total lysate of mammalian cells. In HEK293 cells, the level of polyUb linkages was found to be 52% (Lys(48)), 38% (Lys(63)), 8% (Lys(29)), 2% (Lys(11)), and 0.5% or less for linear, Lys(6), Lys(27), and Lys(33) linkages. Tissue specificity of these linkages was examined in mice fully labeled by heavy stable isotopes (i.e. SILAC mice). Moreover, we profiled the Ub linkages in brain tissues from patients of Alzheimer disease with or without concurrent Lewy body disease as well as three cellular models of proteolytic stress: proteasome deficiency, lysosome deficiency, and heat shock. The data support that polyUb chains linked through Lys(6), Lys(11), Lys(27), Lys(29), and Lys(48) mediate proteasomal degradation, whereas Lys(63) chains are preferentially involved in the lysosomal pathway. Mixed linkages, including Lys(48), may also contribute to lysosomal targeting, as both Lys(63) and Lys(48) linkages are colocalized in LC3-labeled autophagosomes. Interestingly, heat shock treatment augments Lys(11), Lys(48), and Lys(63) but not Lys(29) linkages, and this unique pattern is similar to that in the profiled neurodegenerative cases. We conclude that different polyUb linkages play distinct roles under the three proteolytic stress conditions, and protein folding capacity in the heat shock responsive pathway might be more affected in Alzheimer disease.  相似文献   

10.
Wang M  Cheng D  Peng J  Pickart CM 《The EMBO journal》2006,25(8):1710-1719
Ubiquitin (Ub)-protein ligases (E3s) frequently modify their substrates with multiple Ub molecules in the form of a polyubiquitin (poly-Ub) chain. Although structurally distinct poly-Ub chains (linked through different Ub lysine (Lys) residues) can confer different fates on target proteins, little is known about how E3s select the Lys residue to be used in chain synthesis. Here, we used a combination of mutagenesis, biochemistry, and mass spectrometry to map determinants of linkage choice in chain assembly catalyzed by KIAA10, an HECT (Homologous to E6AP C-Terminus) domain E3 that synthesizes K29- and K48-linked chains. Focusing on the Ub molecule that contributes the Lys residue for chain formation, we found that specific surface residues adjacent to K48 and K29 are critical for the usage of the respective Lys residues in chain synthesis. This direct mechanism of linkage choice bears similarities to the mechanism of substrate site selection in sumoylation catalyzed by Ubc9, but is distinct from the mechanism of chain linkage selection used by the Mms2/Ubc13 (Ub E2 variant (UEV)/E2) complex.  相似文献   

11.
The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which β5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system.  相似文献   

12.
Alanine-scanning mutagenesis, X-ray crystallography, and double mutant cycles were used to characterize the interface between the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 and HEL. Eleven HEL residues in contact with HyHEL-63 in the crystal structure of the antigen-antibody complex, and 10 HyHEL-63 residues in contact with HEL, were individually truncated to alanine in order to determine their relative contributions to complex stabilization. The residues of HEL (Tyr20, Lys96, and Lys97) most important for binding HyHEL-63 (Delta G(mutant) - Delta G(wild type) > 3.0 kcal/mol) form a contiguous patch at the center of the surface contacted by the antibody. Hot spot residues of the antibody (Delta Delta G > 2.0 kcal/mol) are organized in two clusters that juxtapose hot spot residues of HEL, resulting in energetic complementarity across the interface. All energetically critical residues are centrally located, shielded from solvent by peripheral residues that contribute significantly less to the binding free energy. Although HEL hot spot residues Lys96 and Lys97 make similar interactions with antibody in the HyHEL-63/HEL complex, alanine substitution of Lys96 results in a nearly 100-fold greater reduction in affinity than the corresponding mutation in Lys97. To understand the basis for this marked difference, we determined the crystal structures of the HyHEL-63/HEL Lys96Ala and HyHEL-63/HEL Lys97Ala complexes to 1.80 and 1.85 A resolution, respectively. Whereas conformational changes in the proteins and differences in the solvent networks at the mutation sites appear too small to explain the observed affinity difference, superposition of free HEL in different crystal forms onto bound HEL in the wild type and mutant HyHEL-63/HEL complexes reveals that the side-chain conformation of Lys96 is very similar in the various structures, but that the Lys97 side chain displays considerable flexibility. Accordingly, a greater entropic penalty may be associated with quenching the mobility of the Lys97 than the Lys96 side chain upon complex formation, reducing binding. To further dissect the energetics of specific interactions in the HyHEL-63/HEL interface, double mutant cycles were constructed to measure the coupling of 13 amino acid pairs, 11 of which are in direct contact in the crystal structure. A large coupling energy, 3.0 kcal/mol, was found between HEL residue Lys97 and HyHEL-63 residue V(H)Asp32, which form a buried salt bridge surrounded by polar residues of the antigen. Thus, in contrast to protein folding where buried salt bridges are generally destabilizing, salt bridges in protein-protein interfaces, whose residual composition is more hydrophilic than that of protein interiors, may contribute significantly to complex stabilization.  相似文献   

13.
Human Ubc13 and Mms2 (or its homolog, Uev1) form a unique ubiquitin-conjugating enzyme (Ubc) complex that generates atypical Lys(63)-linked ubiquitin conjugates. Such conjugates are attached to specific targets that modulate the activity of various cellular processes including DNA repair, mitotic progression, and nuclear factor-kappaB signaling. Whereas Ubc13 is a typical Ubc, Mms2 is a non-catalytic Ubc variant. Substantial biochemical evidence has revealed a mechanism whereby Mms2 properly orients ubiquitin to allow for Lys(63) conjugation by Ubc13; however, how this specific Ubc13-Mms2 complex is formed and why Mms2 does not form a complex with other Ubcs have not been reported. In order to address these questions, we used a structure-based approach to design mutations and characterize the human Ubc13-Mms2 interface. We used the yeast two-hybrid assay, glutathione S-transferase pull-downs, and surface plasmon resonance to test in vivo and in vitro binding. These experiments were paired with functional complementation and ubiquitin conjugation studies to provide in vivo and in vitro functional data. The results in this study allowed us to identify important residues of the Ubc13-Mms2 interface, determine a correlation between heterodimer formation and function, and conclude why Mms2 forms a specific complex with Ubc13 but not other Ubc proteins.  相似文献   

14.
The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage‐selective recognition of Ub chains by Ub‐binding domain (UBD)‐containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY‐1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48‐linked polyUb. We here identify that this linkage‐selective binding is mediated by a single MIU motif (MIU2) in MINDY‐1. The crystal structure of MIU2 in complex with K48‐linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48‐linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.  相似文献   

15.
The 26 S proteasome possesses two distinct deubiquitinating activities. The ubiquitin (Ub) chain amputation activity removes the entire polyUb chain from the substrates. The Ub chain trimming activity progressively cleaves a polyUb chain from the distal end. The Ub chain amputation activity mediates degradation-coupled deubiquitination. The Ub chain trimming activity can play a supportive or an inhibitory role in degradation, likely depending on features of the substrates. How Ub chain trimming assists degradation is not clear. We find that inhibition of the chain trimming activity of the 26 S proteasome with Ub aldehyde significantly inhibits degradation of Ub4 (Lys-48)-UbcH10 and causes accumulation of free Ub4 (generated from chain amputation) that can be retained on the proteasome. Also, a non-trimmable Lys-48-mimic Ub4 efficiently targets UbcH10 to the 26 S proteasome, but it cannot support efficient degradation of UbcH10 compared with regular Lys-48 Ub4. These results indicate that polyUb chain trimming promotes proteasomal degradation of Lys-48-linked substrates. Mechanistically, we propose that Ub chain trimming cleaves the proteasome-bound Lys-48-linked polyUb chains, which vacates the Ub binding sites of the 26 S proteasome, thus allowing continuous substrate loading.  相似文献   

16.
Lys48-linked polyubiquitin chains serve as a signal for protein degradation by 26S proteasomes through its Ile44 hydrophobic patches interactions. The individual ubiquitin units of each chain are conjugated through an isopeptide bond between Lys48 and the C-terminal Gly76 of the preceding units. The conformation of Lys48-linked tetraubiquitin has been shown to change dynamically depending on solution pH. Here we enzymatically synthesized a wild-type Lys48-linked tetraubiquitin for structural study. In the synthesis, cyclic and non-cyclic species were obtained as major and minor fractions, respectively. This enabled us to solve the crystal structure of tetraubiquitin exclusively with native Lys48-linkages at 1.85 Å resolution in low pH 4.6. The crystallographic data clearly showed that the C-terminus of the first ubiquitin is conjugated to the Lys48 residue of the fourth ubiquitin. The overall structure is quite similar to the closed form of engineered tetraubiquitin at near-neutral pH 6.7, previously reported, in which the Ile44 hydrophobic patches face each other. The structure of the second and the third ubiquitin units [Ub(2)-Ub(3)] connected through a native isopeptide bond is significantly different from the conformations of the corresponding linkage of the engineered tetraubiquitins, whereas the structures of Ub(1)-Ub(2) and Ub(3)-Ub(4) isopeptide bonds are almost identical to those of the previously reported structures. From these observations, we suggest that the flexible nature of the isopeptide linkage thus observed contributes to the structural arrangements of ubiquitin chains exemplified by the pH-dependent closed-to-open conformational transition of tetraubiquitin.  相似文献   

17.
Using a coimmunoprecipitation strategy, we showed that the Cdc34 ubiquitin (Ub)-conjugating enzyme from Saccharomyces cerevisiae self-associates in cell lysates, thereby indicating an in vivo interaction. The ability of Cdc34 to interact with itself is not dependent on its association with the ubiquitin ligase Skp1-Cdc53/Cul1-Hrt1-F-box complex. Rather, this interaction depends upon the integrity of the Cdc34-Ub thiolester. Furthermore, several principal determinants within the Cdc34 catalytic domain, including the active-site cysteine, amino acid residues S73 and S97, and its catalytic domain insertion, also play a role in self-association. Mutational studies have shown that these determinants are functionally important in vivo and operate at the levels of both Cdc34-Ub thiolester formation and Cdc34-mediated multi-Ub chain assembly. These determinants are spatially situated in a region that is close to the active site, corresponding closely to the previously identified E2-Ub interface. These observations indicate that the formation of the Cdc34-Ub thiolester is important for Cdc34 self-association and that the interaction of Cdc34-Ub thiolesters is in turn a prerequisite for both multi-Ub chain assembly and Cdc34's essential function(s). A conclusion from these findings is that the placement of ubiquitin on the Cdc34 surface is a structurally important feature of Cdc34's function.  相似文献   

18.
Ubc13, a ubiquitin-conjugating enzyme (Ubc), requires the presence of a Ubc variant (Uev) for polyubiquitination. Uevs, although resembling Ubc in sequence and structure, lack the active site cysteine residue and are catalytically inactive. The yeast Uev (Mms2) incites noncanonical Lys63-linked polyubiquitination by Ubc13, whereas the increased diversity of Uevs in higher eukaryotes suggests an unexpected complication in ubiquitination. In this study, we demonstrate that divergent activities of mammalian Ubc13 rely on its pairing with either of two Uevs, Uev1A or Mms2. Structurally, we demonstrate that Mms2 and Uev1A differentially modulate the length of Ubc13-mediated Lys63-linked polyubiquitin chains. Functionally, we describe that Ubc13-Mms2 is required for DNA damage repair but not nuclear factor kappaB (NF-kappaB) activation, whereas Ubc13-Uev1A is involved in NF-kappaB activation but not DNA repair. Our finding suggests a novel regulatory mechanism in which different Uevs direct Ubcs to diverse cellular processes through physical interaction and alternative polyubiquitination.  相似文献   

19.
The nuclear factor (NF)-kappaB pathway is a paradigm for gene expression control by ubiquitin-mediated protein degradation. In stimulated cells, phosphorylation by the IkappaB kinase (IKK) complex primes NF-kappaB-inhibiting IkappaB molecules for lysine (Lys)-48-linked polyubiquitination and subsequent destruction by the 26S proteasome. However, recent studies indicate that the ubiquitin (Ub) system controls NF-kappaB pathways at many levels. Ub ligases are activated by different upstream signalling pathways, and they function as central regulators of IKK and c-Jun amino-terminal kinase activation. The assembly of Lys 63 polyUb chains provides docking surfaces for the recruitment of IKK-activating complexes, a reaction that is counteracted by deubiquitinating enzymes. Furthermore, Ub conjugation targets upstream signalling mediators as well as nuclear NF-kappaB for post-inductive degradation to limit the duration of signalling.  相似文献   

20.
In the ubiquitin (Ub) pathway, proteins are ligated with polyUb chains and then are degraded by a 26 S protease complex. We describe an enzyme, called isopeptidase T, that acts on polyUb chains. It is a monomeric Ub-binding protein abundant in erythrocytes and reticulocytes. The activity of the isopeptidase is inhibited by iodoacetamide and Ub aldehyde. Treatment of the enzyme with Ub aldehyde increased its affinity for free Ub, indicating the existence of two different Ub-binding sites and cooperativity between the two sites. Isopeptidase T acts on polyUb-protein conjugates, but not on conjugates in which the formation of polyUb chains was prevented by the use of reductively methylated Ub or on abnormal polyUb chains formed with a mutant Ub that contains a Lys----Arg substitution at residue 48. The enzyme converts high molecular mass polyUb-protein conjugates to lower molecular mass forms with the release of free Ub, but not of free protein substrate. The lower molecular mass Ub-protein conjugate products are resistant to further action of the enzyme. Isopeptidase T stimulates protein degradation in a system reconstituted from purified enzyme components. The enzyme also stimulates the degradation of proteins ligated to polyUb chains by the 26 S protease complex. Preincubation of polyUb-protein conjugates with the isopeptidase did not much increase their susceptibility to proteolysis by the 26 S complex. On the other hand, preincubation of conjugates with the 26 S protease complex and ATP increased the release of free Ub upon further incubation with the isopeptidase. It thus seems that a role of this isopeptidase in protein breakdown is to remove polyUb chain remnants following the degradation of the protein substrate moiety by the 26 S complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号