首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-affinity binding of angiotensin II (ANG II) to the ANG II type 1 receptor (AT1R) results in the activation of ERK1/2 mitogen-activated protein kinases (MAPK). However, the precise mechanism of ANG II-induced ERK1/2 activation has not been fully characterized. Here, we investigated the signaling events leading to ANG II-induced ERK1/2 activation using a c-Src/Yes/Fyn tyrosine kinase-deficient mouse embryonic fibroblast (MEF) cell line stably transfected with the AT1R (SYF/AT1). ERK1/2 activation was reduced by 50% within these cells compared with wild-type controls (WT/AT1). The remaining 50% of intracellular ERK1/2 activation was dependent upon heterotrimeric G protein and protein kinase C zeta (PKC) activation. Therefore, ANG II-induced ERK1/2 activation occurs via two independent mechanisms. We next investigated whether a loss of either c-Src/Yes/Fyn or PKC signaling affected ERK1/2 nuclear translocation and cell proliferation in response to ANG II. ANG II-induced cell proliferation was markedly reduced in SYF/AT1 cells compared with WT/AT1 cells (P < 0.01), but interestingly, ERK2 nuclear translocation was normal. ANG II-induced nuclear translocation of ERK2 was blocked via pretreatment of WT/AT1 cells with a PKC pseudosubstrate. ANG II-induced cell proliferation was significantly reduced in PKC pseudosubstrate-treated WT/AT1 cells (P < 0.01) and was completely blocked in SYF/AT1 cells treated with this same compound. Thus ANG II-induced cell proliferation appears to be regulated by both ERK1/2-driven nuclear and cytoplasmic events. In response to ANG II, the ability of ERK1/2 to remain within the cytoplasm or translocate into the nucleus is controlled by c-Src/Yes/Fyn or heterotrimeric G protein/PKC signaling, respectively. Src family tyrosine kinases; angiotensin II  相似文献   

2.
Our published studies show that the distribution of the ANG II type 1 (AT1) receptor (AT1R), expressed as a enhanced yellow fluorescent fusion (YFP) protein (AT1R/EYFP), is altered upon cellular treatment with ANG II or coexpression with intracellular ANG II. AT1R accumulates in nuclei of cells only in the presence of ANG II. Several transmembrane receptors are known to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. The present study was designed to determine whether the AT1R is cleaved before nuclear transport. A plasmid encoding a rat AT1R labeled at the amino terminus with enhanced cyan fluorescent protein (CFP) and at the carboxy terminus with EYFP was employed. Image analyses of this protein in COS-7 cells, CCF-STTG1 glial cells, and A10 vascular smooth muscle cells show the two fluorescent moieties to be largely spatially colocalized in untreated cells. ANG II treatment, however, leads to a separation of the fluorescent moieties with yellow fluorescence accumulating in more than 30% of cellular nuclei. Immunoblot analyses of extracts and conditioned media from transfected cells indicate that the CFP domain fused to the extracellular amino-terminal AT1R domain is cleaved from the membrane and that the YFP domain, together with the intracellular cytoplasmic carboxy terminus of the AT1R, is also cleaved from the membrane-bound receptor. The carboxy terminus of the AT1R is essential for cleavage; cleavage does not occur in protein deleted with respect to this region. Overexpressed native AT1R (nonfusion) is also cleaved; the intracellular 6-kDa cytoplasmic domain product accumulates to a significantly higher level with ANG II treatment. nuclear angiotensin II type 1 receptor; intracrine; intracellular  相似文献   

3.
Caveolae are identifiable plasma membrane invaginations. The main structural proteins of caveolae are the caveolins. There are three caveolins expressed in mammals, designated Cav-1, Cav-2, and Cav-3. It has been postulated that Cav-1 acts as a scaffold protein for signaling proteins; these include ion channels, enzymes, and other ligand receptors like membrane-associated estrogen receptor (ER) or ERβ. Caveolae-associated membrane proteins are involved in regulating some of the rapid estrogenic effects of 17β-estradiol. One important system related to the activity of ER and caveolae is the renin-angiotensin system. Angiotensin II (ANG II) has numerous actions in vascular smooth muscle, including modulation of vasomotor tone, cell growth, apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt activation, and others. Many proteins associated with caveolae are in close relation with the scaffolding domain of Cav-1 (82–101 amino acid residues). It has been proposed that this peptide may acts as a kinase inhibitor. Therefore, to explore the ability of Cav-1 scaffolding peptide (CSP-1) to regulate ANG II function and analyze the relationship between ER and ANG II type 1 and 2 (AT1 and AT2) receptors, we decided to study the effects of CSP-1 on ANG II-induced intracellular Ca2+ kinetics and the effect of 17β-estradiol on this modulation using human smooth muscle cells in culture, intracellular Ca2+ concentration measurements, immuno- and double-immunocytochemistry confocal analysis of receptor expression, immunoblot analysis, and immunocoprecipitation assays to demonstrate coexpression. We hypothesized that CSP-1 inhibits ANG II-mediated increases in intracellular Ca2+ concentrations by interfering with intracellular signaling including the PI3K/Akt pathway. We also hypothesize that AT2 receptors associate with Cav-1. Our results show that there is a close association of AT1, AT2, and ER with Cav-1 in human arterial smooth muscle cells in culture. CSP-1 inhibits ANG II-induced intracellular signaling. estrogen receptors; angiotensin type 1 and 2 receptors; phosphatidylinositol 3-kinase; intracellular signaling; tissue culture; angiotensin receptors  相似文献   

4.
5.
We recently reported intracrine effects of angiotensin II (ANG II) on cardiac myocyte growth and hypertrophy that were not inhibited by the ANG II type 1 receptor (AT1) antagonist, losartan. To further determine the role of AT1 in intracrine effects, we studied the effect of intracellular ANG II (iANG II) on cell proliferation in native Chinese hamster ovary (CHO) cells and those stably transfected with AT1 receptor (CHO-AT1). CHO-AT1, but not CHO cells, showed enhanced proliferation following exposure to extracellular ANG II (eANG II). However, when transiently transfected with an iANG II expression vector, both cell types showed significantly enhanced proliferation, compared with those transfected with a scrambled peptide. Losartan blocked eANG II-induced cell proliferation, but not that induced by iANG II. To further confirm these findings, CHO and CHO-AT1 cells were stably transfected for iANG II expression (CHO-iA and CHO-AT1-iA, respectively). Cells grown in serum-free medium were counted every 24 h, up to 72 h. CHO-iA and CHO-AT1-iA cells showed a steeper growth curve compared with CHO and CHO-AT1, respectively. These observations were confirmed by Wst-1 assay. The AT1 receptor antagonists losartan, valsartan, telmisartan, and candesartan did not attenuate the faster growth rate of CHO-iA and CHO-AT1-iA cells. eANG II showed an additional growth effect in CHO-AT1-iA cells, which could be selectively blocked by losartan. These data demonstrate that intracrine ANG II can act independent of AT1 receptors and suggest novel intracellular mechanisms of action for ANG II. renin-angiotensin system; angiotensinogen; peptide hormones; nuclear signaling; intracrine  相似文献   

6.
In hypertension or other forms of cardiovascular disease, the chronic activation of the renin-angiotensin-aldosterone system (RAAS) leads to dysfunction of the vasculature, including, increased vascular tone, inflammation, fibrosis and thrombosis. Cross-talk between the main mediators of the RAAS, aldosterone and angiotensin (Ang) II, participates in the development of this vascular dysfunction. Recent studies have highlighted the molecular mechanisms supporting this cross-talk in vascular smooth muscle cells (VSMCs). Some of the signaling pathways activated by the Ang II type 1 receptor (AT1R) are dependent on the mineralocorticoid receptor (MR) and vice versa. VSMC signaling pathways involved in migration and growth are under the control of cross-talk between aldosterone and Ang II. A synergistic mechanism leads to potentiation of signaling pathways activated by each agent. The genomic and non-genomic mechanisms activated by aldosterone cooperate with Ang II to regulate vascular tone and gene expression of pro-inflammatory and pro-fibrotic molecules. This cross-talk is dependent on the non-receptor tyrosine kinase c-Src, and on receptor tyrosine kinases, EGFR and PDGFR, and leads to activation of MAP kinases and growth, migration and inflammatory effects. These new findings will contribute to development of better treatments for conditions in which the RAAS is excessively activated.  相似文献   

7.
Angiotensin II(ANG II) produces vasoconstriction by a direct action on smooth musclecells via AT1 receptors. Thesereceptors are also present in the endothelium, but their function ispoorly understood. This study was therefore undertaken to determinewhether ANG II elicits the release of nitric oxide (NO) from cultured rat aortic endothelial cells. NO production, measured by theaccumulation of nitrite and nitrate, was enhanced by107 M ANG II. Thebiological activity of the NO released by ANG II action was evaluatedby measuring its guanylate cyclase-stimulating activity in smoothmuscle cells. The guanosine 3',5'-cyclic monophosphate (cGMP) content of smooth muscle cells was significantly increased byexposure of supernatant from ANG II-stimulated endothelial cells. Theseeffects resulted from the activation of NO synthase, as they wereinhibited by the L-arginineanalogs. These ANG II actions were mediated by theAT1 receptor, as shown by theirinhibition by the AT1 antagonistlosartan. The cGMP production by reporter cells was inhibited by thecalmodulin antagonist W-7, suggesting that ANG II activates endothelialcalmodulin-dependent NO synthase. This hypothesis is also supported bythe increase of intracellular free calcium induced by ANG II inendothelial cells. ANG II also stimulated luminol-enhancedchemiluminescence in endothelial cells. This effect was inhibited byN-monomethyl-L-arginine andsuperoxide dismutase, suggesting that this luminol-enhancedchemiluminescence reflected an increase in peroxynitrite production.Thus ANG II stimulates NO release from macrovascular endothelium, whichmay modulate the direct vasoconstrictor effect of ANG II on smoothmuscle cells. However, this beneficial effect may be counteracted bythe simultaneous production of peroxynitrite, which could contribute toseveral pathological processes in the vascular wall.

  相似文献   

8.
Receptor-mediated endocytosis of extracellular ANG II has been suggested to play an important role in the regulation of proximal tubule cell (PTC) function. Using immortalized rabbit PTCs as an in vitro cell culture model, we tested the hypothesis that extracellular ANG II is taken up by PTCs through angiotensin type 1 receptor (AT1; or AT1a) receptor-mediated endocytosis and that inhibition of ANG II endocytosis using a selective AT1 receptor small-interfering RNA (siRNA; AT1R siRNA) or endocytotic inhibitors exerts a physiological effect on total and apical sodium and hydrogen exchanger isoform 3 (NHE-3) protein abundance. Western blots and live cell imaging with FITC-labeled ANG II confirmed that transfection of PTCs with a human specific AT1R siRNA for 48 h selectively knocked down AT1 receptor protein by 76 ± 5% (P < 0.01), whereas transfection with a scrambled siRNA had little effect. In nontransfected PTCs, exposure to extracellular ANG II (1 nM) for 60 min at 37°C increased intracellular ANG II accumulation by 67% (control: 566 ± 55 vs. ANG II: 943 ± 160 pg/mg protein, P < 0.05) and induced mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) 1/2 phosphorylation (163 ± 15% of control, P < 0.01). AT1R siRNA reduced ANG II endocytosis to a level similar to losartan, which blocks cell surface AT1 receptors (557 ± 37 pg/mg protein, P < 0.05 vs. ANG II), or to colchicine, which disrupts cytoskeleton microtubules (613 ± 12 pg/mg protein, P < 0.05 vs. ANG II). AT1R siRNA, losartan, and colchicine all attenuated ANG II-induced ERK1/2 activation and total cell lysate and apical membrane NHE-3 abundance. The scrambled siRNA had no effect on ANG II endocytosis, ERK1/2 activation, or NHE-3 expression. These results suggest that AT1 receptor-mediated endocytosis of extracellular ANG II may regulate proximal tubule sodium transport by increasing total and apical NHE-3 proteins. extracellular signal-regulated kinase 1/2; kidney; sodium transport; receptor internalization; ribonucleic acid interference  相似文献   

9.
3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a signal integrator that activates the AGC superfamily of serine/threonine kinases. PDK1 is phosphorylated on tyrosine by oxidants, although its regulation by agonists that stimulate G-protein-coupled receptor signaling pathways and the physiological consequences of tyrosine phosphorylation in this setting have not been fully identified. We found that angiotensin II stimulates the tyrosine phosphorylation of PDK1 in vascular smooth muscle in a calcium- and c-Src-dependent manner. The calcium-activated tyrosine kinase Pyk2 acts as a scaffold for Src-dependent phosphorylation of PDK1 on Tyr9, which permits phosphorylation of Tyr373 and -376 by Src. This critical function of Pyk2 is further supported by the observation that Pyk2 and tyrosine-phosphorylated PDK1 colocalize in focal adhesions after angiotensin II stimulation. Importantly, infection of smooth muscle cells with a Tyr9 mutant of PDK1 inhibits angiotensin II-induced tyrosine phosphorylation of paxillin and focal adhesion formation. These observations identify a novel interaction between PDK1 and Pyk2 that regulates the integrity of focal adhesions, which are major compartments for integrating signals for cell growth, apoptosis, and migration.  相似文献   

10.
We have previously reported that angiotensin II (ANG II) stimulated Src tyrosine kinase via a pertussis toxin-sensitive type 2 receptor, which, in turn, activates MAPK, resulting in an increase in nitric oxide synthase (NOS) expression in pulmonary artery endothelial cells (PAECs). The present study was designed to investigate the pathway by which ANG II activates Src leading to an increase in ERK1/ERK2 phosphorylation and an increase in NOS protein in PAECs. Transfection of PAECs with Gi3 dominant negative (DN) cDNA blocked the ANG II-dependent activation of Src, ERK1/ERK2 phosphorylation, and increase in NOS expression. ANG II stimulated an increase in tyrosine phosphorylation of sequence homology of collagen (Shc; 15 min) that was prevented when PAECs were pretreated with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo-[3,4-D]pyrimidine (PP2), a Src inhibitor. ANG II induced a Src-dependent association between Shc and growth factor receptor-bound protein 2 (Grb2) and between Grb2 and son of sevenless (Sos), both of which were maximal at 15 min. The ANG II-dependent increase in Ras GTP binding was prevented when PAECs were pretreated with the AT2 antagonist PD-123319 or with PP2 or were transfected with Src DN cDNA. ANG II-dependent activation of MAPK and the increase in endothelial NOS (eNOS) were prevented when PAECs were transfected with Ras DN cDNA or treated with FTI-277, a farnesyl transferase inhibitor. ANG II induction of Raf-1 phosphorylation was prevented when PAECs were pretreated with PD-123319 and PP2. Raf kinase inhibitor 1 prevented the ANG II-dependent increase in eNOS expression. Collectively, these data suggest that Gi3, Shc, Grb2, Ras, and Raf-1 link Src to activation of MAPK and to the AT2-dependent increase in eNOS expression in PAECs. Src; mitogen-activated protein kinase  相似文献   

11.
Angiotensin II(ANG II) has long been known for its pressor and growth-promotingeffects, which are both mediated by theAT1 receptor. By contrast, theAT2 receptor has recently beenreported to mediate inhibition of proliferation through as yetundefined mechanisms. We report here that in bovine adrenal fasciculata cells ANG II by itself does not affect growth but inhibits basic fibroblast growth factor (bFGF)-induced DNA synthesis and blocks thecells in G1 phase. Consistent withthis, ANG II inhibits cyclin D1 expression and cyclinD1-associated kinase activity. Theantimitogenic effect of ANG II is partly mimicked by theAT2-selective agonist CGP-42112.It is also blocked partly and in an additive fashion by theAT1- andAT2-selective antagonists losartanand PD-123319, indicating the contribution of both receptor subtypes tothis response. AT1-dependentantiproliferation is selectively blocked by the cyclooxygenaseinhibitor indomethacin and restored by prostaglandin E2, whereasAT2-receptor-mediated inhibitionof growth is suppressed by the tyrosine phosphatase inhibitorsorthovanadate and bpV(pic). Both pathways are, however,pertussis toxin sensitive. We hypothesize that, in fasciculatacells, the AT1 receptor inhibitsbFGF-induced proliferation by stimulating prostaglandin synthesis,whereas the AT2 receptor mediatesits effect through a pathway that requires protein tyrosine phosphataseactivation.

  相似文献   

12.
Elevated tissue levels of angiotensin II (ANG II) are associated with impairment of insulin actions in metabolic and cardiovascular tissues. ANG II-stimulated activation of mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K) in cardiovascular tissues is implicated in cardiac hypertrophy and vascular remodeling. However, the role of ANG II-stimulated mTOR/p70S6K in vascular endothelium is poorly understood. In the present study, we observed that ANG II stimulated p70S6K in bovine aortic endothelial cells. ANG II increased phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser(636/639) and inhibited the insulin-stimulated phosphorylation of endothelial nitric oxide synthase (eNOS). An inhibitor of mTOR, rapamycin, attenuated the ANG II-stimulated phosphorylation of p70S6K and phosphorylation of IRS-1 (Ser(636/639)) and blocked the ability of ANG II to impair insulin-stimulated phosphorylation of eNOS, nitric oxide production, and mesenteric-arteriole vasodilation. Moreover, point mutations of IRS-1 at Ser(636/639) to Ala prevented the ANG II-mediated inhibition of insulin signaling. From these results, we conclude that activation of mTOR/p70S6K by ANG II in vascular endothelium may contribute to impairment of insulin-stimulated vasodilation through phosphorylation of IRS-1 at Ser(636/639). This ANG II-mediated impairment of vascular actions of insulin may help explain the role of ANG II as a link between insulin resistance and hypertension.  相似文献   

13.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.  相似文献   

14.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

15.
Summary The model of angiotensin II (ANG II) developed in our laboratory using a combination of NMR, fluorescence data and molecular graphics [Matsoukas, J.M. et al., J. Biol. Chem., 269 (1994) 5303] served as a template for a systematic superimposition of potent AT1 receptor antagonists with ANG II. The key amino acids in this model, tyrosine, phenylalanine and histidine, form a charge-relay system. The studied ANG II AT1 receptor antagonists were found to accommodate this relay system. The proposed model offers a motivation to synthetic chemists to develop ANG II antagonists that differ from the losartan prototype structure but possess an enhanced biological profile.  相似文献   

16.
Angiotensin II (ANG II) has been etiologically linked to vascular disease; however, its role in the alterations of endothelial function that occur in vascular disorders is not completely understood. Matrix metalloproteinases (MMPs) and proinflammatory cytokines are involved in the pathological remodeling of blood vessels that occurs in vascular disease. In this study we evaluated the effects of ANG II on tumor necrosis factor (TNF)- and MMP-2 production in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with ANG II (0.1–10 µM) for 24 h, in the presence or absence of antagonists of ANG II type 1 (AT1R) and type 2 (AT2R) receptors, and the production and release of TNF- and MMP-2 were assessed. ANG II increased TNF- mRNA and protein expression and the release of bioactive TNF-. Moreover, ANG II induced MMP-2 release and reduced the secretion of tissue inhibitor of MMP (TIMP)-2 from endothelial cells. To elucidate whether endogenous TNF- could mediate the effects of ANG II on MMP-2 release, cells were pretreated with anti-TNF- neutralizing antibodies or pentoxifylline (an inhibitor of TNF- synthesis). TNF- inhibition prevented the secretion of MMP-2 induced by ANG II. Furthermore, AT1R antagonism with candesartan prevented the formation of MMP-2 and TNF- and the reduction of TIMP-2 induced by ANG II. These results indicate that ANG II, via AT1R, modulates the secretion of TNF- and MMP-2 from endothelial cells and that TNF- mediates the effects of ANG II on MMP-2 release. remodeling; vasoactive mediators; inflammation  相似文献   

17.
ANG II type 1 (AT1) receptors respond to sustained exposure to ANG II byundergoing downregulation of absolute receptor numbers. It has beenassumed previously that downregulation involves endocytosis. Thepresent study hypothesized that AT1 receptor downregulation occurs independently of receptor endocytosis or G protein coupling. Mutant AT1 receptors with carboxy-terminal deletionsinternalized <5% of radioligand compared with 65% for wild-typeAT1 receptors. The truncated AT1 receptorsretained the ability to undergo downregulation. These data suggest theexistence of an alternative pathway to AT1 receptordegradation that does not require endocytosis, per se. Point mutationsin either the second transmembrane region or second intracellular loopimpaired G protein (Gq) coupling. These receptors exhibiteda biphasic pattern of downregulation. The earliest phase ofdownregulation (0-2 h) was independent of coupling toGq, but no additional downregulation was observed after2 h of ANG II exposure in the receptors with impaired coupling toGq. These data suggest that coupling to Gq isrequired for the later phase (2-24 h) of AT1 receptor downregulation.

  相似文献   

18.
19.
A series of signaling cascades are activated after angiotensin II binds to angiotensin II type I receptor (AT1R), a peptide that is an important mediator of oxidative stress. Hsp70 regulates a diverse set of signaling pathways through interactions with proteins. Here, we tested the hypothesis of angiotensin II AT1R inhibition effect on Hsp70 interaction with Nox4/p22phox complex and Hsp70 leading to actin cytoskeleton modulation in spontaneously hypertensive rats (SHR) vascular smooth muscle cells (VSMCs). SHR and Wistar–Kyotto rats (VSMCs from 8 to 10 weeks) were stimulated with angiotensin II (100 nmol/L) for 15 min (AII), treated with losartan (100 nmol/L) for 90 min (L), and with losartan for 90 min plus angiotensin in the last 15 min (L + AII). Whereas SHR VSMCs exposure to angiotensin II overexpressed AT1R and Nox4 nicotinamide–adenine dinucleotide phosphate (NADPH) oxidase and slightly downregulated caveolin-1 expression, losartan decreased AT1R protein levels and increased caveolin-1 and Hsp70 expression in SHR VSMC membranes. Immunoprecipitation and immunofluorescence confocal microscopy proved interaction and colocalization of membrane translocated Hsp70 and Nox4/p22phox. Increased levels of Hsp70 contrast with the decreased immunoprecipitation of Nox4/p22phox and RhoA in membranes from SHR VSMCs (L) vs SHR VSMCs (AII). Hsp72 depletion resulted in higher Nox4 expression and increased NADPH oxidase activity in VSMCs (L + AII) from SHR when contrasted with nontransfected VSMCs (L + AII). After Hsp72 knockdown in SHR VSMCs, losartan could not impair angiotensin II-enhanced stress fiber formation and focal adhesion assembly. In conclusion, our data showing a negative regulation of Hsp70 on Nox4/p22phox demonstrates a possible mechanism in explaining the antioxidative function joined to cytoskeletal integrity modulation within the effects of losartan in VSMCs from SHR.  相似文献   

20.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as “risk factors” for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases. (Mol Cell Biochem 264: 85–97, 2004)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号