首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhibitory glycine receptors are most abundant in spinal cord and brainstem, and glycinergic synapses have a well-established role in the regulation of locomotor behavior. Little is known about the function of glycine receptors in cortex and hippocampus, where GABA plays a dominant role in synaptic inhibition. Therefore, we have investigated tissue and cellular expression of glycine receptor alpha-subunits. Western blot and immunohistochemical analyses reveal the presence of glycine receptors in hippocampal tissue. Immunocytochemical experiments in hippocampal cultures show prominent cellular expression of glycine receptors in pyramidal neurons and GAD-positive interneurons similar to the calcium-binding protein VILIP-1 with widespread hippocampal distribution. On the subcellular level we found co-staining of GlyR and the presynaptic marker synapsin I. Furthermore, co-staining with GAD at synaptic terminals indicated partial co-localization of GABA- and glycine receptors.  相似文献   

2.
Our studies indicate that ErbB complexes participate in both survival and synaptic plasticity signals of hippocampal neurons but in a manner that depends on the subcellular localization of the receptor ensembles. Using dissociated hippocampal cultures, we found that neurons, rather than glial cells, are the primary targets of ErbB receptor ligands such as epidermal growth factor and heregulin. Further investigation demonstrated that ErbB receptors distribute differentially in hippocampal neurons with the epidermal growth factor receptor confined to neural cell bodies and the p185(c-neu) and ErbB4 receptors distributed to both neural soma and neurites. Activation of ErbB receptor and downstream signaling molecules were observed in neurites only after heregulin stimulation. The receptor complex which mediated neurite located signals was the p185(c-neu)/ErbB4 heterodimer. Colocalization of p185(c-neu), but not epidermal growth factor receptor, with postsynaptic density protein 95 suggests that the heregulin signaling contributes to synapse specific activities. However, the epidermal growth factor receptor complex mediates physiological survival signals, as neuronal survival was enhanced by epidermal growth factor, rather than heregulin. Collectively, these studies indicate that different ErbB ensembles localize to different locations on the neuron to mediate distinct signals and functions.  相似文献   

3.
4.
Immunocytochemical localization of Na+ channel subtypes RI and RII showed that RI immunoreactivity is relatively low and homogeneous along the rostral-caudal extent of sagittal brain sections, whereas RII staining is heterogeneous and relatively dense in the forebrain, substantia nigra, hippocampus, and cerebellum. The somata of the dentate granule cells, hippocampal pyramidal cells, cerebellar Purkinje cells, and spinal motor neurons are immunoreactive for RI but not RII. In contrast, areas rich in unmyelinated nerve fibers, such as the mossy fibers of the dentate granule cells, the stratum radiatum and stratum oriens of the hippocampus, and the molecular layer of the cerebellum, are strongly immunoreactive for RII but not RI. Differential regulation of expression of RI and RII genes may allow differential modulation of Na+ channel density in somata and axons. The sites of RI localization correlate closely with sites where sustained Na+ currents have been recorded.  相似文献   

5.
A Gardner  P Jukkola  C Gu 《Nature protocols》2012,7(10):1774-1782
Axons of various hippocampal neurons are myelinated mainly postnatally, which is important for the proper function of neural circuits. Demyelination in the hippocampus has been observed in patients with multiple sclerosis, Alzheimer's disease or temporal lobe epilepsy. However, very little is known about the mechanisms and exact functions of the interaction between the myelin-making oligodendrocytes and the axons within the hippocampus. This is mainly attributable to the lack of a system suitable for molecular studies. We recently established a new myelin coculture from embryonic day (E) 18 rat embryos consisting of hippocampal neurons and oligodendrocytes, with which we identified a novel intra-axonal signaling pathway regulating the juxtaparanodal clustering of Kv1.2 channels. Here we describe the detailed protocol for this new coculture. It takes about 5 weeks to set up and use the system. This coculture is particularly useful for studying myelin-mediated regulation of ion channel trafficking and for understanding how neuronal excitability and synaptic transmission are regulated by myelination.  相似文献   

6.
We examined the subcellular distribution of specific mRNAs in cultured sympathetic neurons. Under appropriate conditions, sympathetic neurons extend both axons and dendrites that are distinguishable by light microscopic and immunocytochemical criteria. In situ hybridization revealed a differential localization of mRNA within dendrites. mRNA encoding MAP2 was abundant in cell bodies and distributed nonhomogeneously throughout the dendritic compartment, but was not detected in axons. In contrast, mRNAs encoding GAP-43 and alpha-tubulin were restricted to the cell body and largely excluded from dendrites as well as axons. Detergent extraction revealed that most dendrite-associated mRNA encoding MAP2 was associated with the Triton X-100 insoluble fraction of the cell. The subset of mRNAs present in the dendritic compartment may encode proteins involved in the morphogenesis and remodeling of dendrites.  相似文献   

7.
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit (GluR1-4) mRNAs expressed by single neurons in rat hippocampal cultures were quantified by single-cell RT-PCR using an internal standard RNA after whole-cell patch-clamp recording. The internal standard RNA, derived from GluR2 with a single nucleotide substitution, was reverse-transcribed and PCR-amplified with the same efficiency as GluR1-4 mRNAs. The mean mRNA numbers harvested in vitro from pyramidal-like neurons on day 9 were 1150 +/- 324 molecules of GluR1, 1080 +/- 273 molecules of GluR2, 100 +/- 20 molecules of GluR3, and 50 +/- 10 molecules of GluR4 (mean +/- SEM, n = 12). In a non-pyramidal neuronal population that expresses AMPA receptors characterized by high Ca(2+) permeability, the numbers of GluR1, GluR3 and GluR4 mRNA molecules harvested per cell were 354 +/- 64, 25 +/- 17 and 168 +/- 36, respectively (n = 8). The GluR2 mRNA was not detected in this cell type. The calculated ratio of AMPAR mRNA molecules per total mRNA molecules was 1/240 in pyramidal-like neurons (1/500 for GluR2), being in the range obtained with total RNA from rat forebrain and cerebellum (1/170 and 1/380, respectively). Finally, our results indicated that the proportion of GluR1-4 mRNA located in neurites reached approximately 60% in pyramidal-like neurons. However, we found no evidence of preferential subcellular distribution of a given subunit.  相似文献   

8.
Diacylglycerol kinase (DGK) plays a pivotal role in cellular signal transduction through regulating levels of the second messenger diacylglycerol (DG). Previous studies have revealed that DGK is composed of a family of isozymes that show remarkable heterogeneity in terms of molecular structure, functional domains, tissue and cellular gene expression. Recently, it has been shown that DG is produced in various subcellular compartments including the plasma membrane, internal membranes, cytoskeleton, and nucleus. However, it remains unclear how DG is regulated at distinct subcellular sites. To address this point, we have used an epitope-tag expression system in cultured cells and investigated the subcellular localization of DGK isozymes under the same experimental conditions. We show here that DGK isozymes are targeted differentially to unique subcellular sites in transfected COS7 cells, including the cytoplasm, actin stress fibers, Golgi complex, endoplasmic reticulum, and nucleus. It is also shown that among the isozymes overexpression of DGKbeta causes fragmentation of actin stress fibers while a kinase-dead mutant of DGKbeta abolishes its colocalization with actin stress fibers. These data strongly suggest that each isozyme may be responsible for the metabolism of DG that is produced upon stimulation at a different and specific subcellular site and that DGKbeta activity might have effects on the reorganization of actin stress fibers in transfected COS7 cells.  相似文献   

9.
Hippocampal neurons in dissociated cell culture are one of the most extensively used model systems in the field of molecular and cellular neurobiology. Only limited data are however available on the normal time frame of synaptogenesis, synapse number and ultrastructure of excitatory synapses during early development in culture. Therefore, we analyzed the synaptic ultrastructure and morphology and the localization of presynaptic (Bassoon) and postsynaptic (ProSAP1/Shank2) marker proteins in cultures established from rat embryos at embryonic day 19, after 3, 7, 10, 14, and 21 days in culture. First excitatory synapses were identified at day 7 with a clearly defined postsynaptic density and presynaptically localized synaptic vesicles. Mature synapses on dendritic spines were seen from day 10 onward, and the number of synapses steeply increased in the third week. Fenestrated or multiple synapses were found after 14 or 21 days, respectively. So-called dense-core vesicles, responsible for the transport of proteins to the active zone of the presynaptic specialization, were seen on cultivation day 3 and 7 and could be detected in axons and especially in the presynaptic subcompartments. The expression and localization of the presynaptic protein Bassoon and of the postsynaptic molecule ProSAP1/Shank2 was found to correlate nicely with the ultrastructural results. This regular pattern of development and maturation of excitatory synapses in hippocampal culture starting from day 7 in culture should ease the comparison of synapse number and morphology of synaptic contacts in this widely used model system.  相似文献   

10.
Differential subcellular localization of zinc in the rat retina.   总被引:5,自引:0,他引:5  
In the retina, zinc is believed to be a modulator of synaptic transmission and a constituent of metalloenzymes. To determine whether the intracellular localization of zinc correlates with function, we examined the localization of endogenous zinc in the rat retina using the silver amplification method. By light microscopy, reaction products were detected in the pigment epithelial cells (PE), the inner segment of photoreceptors (IS), the outer nuclear layer (ONL) and the inner nuclear layer (INL), the outer plexiform layer (OPL) and the inner plexiform layer (IPL), and the ganglion cell layer (GC). The heaviest accumulation of precipitate was observed in PE and IS, whereas only a little precipitate was found in GC. When the intracellular zinc was chelated with diethyldithiocarbamate, a small amount of precipitate was observed only in ONL. By electron microscopy, zinc was associated with three compartments. In OPL and IPL, zinc was associated with neural processes, while in PE, IS, INL, and GC it was associated with the Golgi apparatus. In ONL, zinc was associated with the nucleus. Zinc in the neural processes is believed to act as a modulator of synaptic transmission, and zinc associated with the Golgi apparatus is assumed to catalyze metalloenzyme reactions.  相似文献   

11.
Survivin is an inhibitor of apoptosis protein (IAP) that is markedly overexpressed in most cancers. We identified two novel functionally divergent splice variants, i.e. non-antiapoptotic survivin-2B and antiapoptotic survivin-deltaEx3. Because survivin-2B might be a naturally occurring antagonist of antiapoptotic survivin variants, we analyzed the subcellular distribution of these proteins. PSORT II analysis predicted a preferential cytoplasmic localization of survivin and survivin-2B, but a preferential nuclear localization of survivin-deltaEx3. GFP-tagged survivin variants confirmed the predicted subcellular localization and additionally revealed a cell cycle-dependent nuclear accumulation of survivin-deltaEx3. Moreover, a bipartite nuclear localization signal found exclusively in survivin-deltaEx3 may support cytoplasmic clearance of survivin-deltaEx3. In contrast to the known association between survivin and microtubules or centromeres during mitosis, no corresponding co-localization became evident for survivin-deltaEx3 or survivin-2B. In conclusion, our study provided data on a differential subcellular localization of functionally divergent survivin variants, suggesting that survivin isoforms may perform different functions in distinct subcellular compartments and distinct phases of the cell cycle.  相似文献   

12.
Synapsin I, one of the major synaptic proteins, is thought to associate with synaptic vesicles and to play a regulatory role in neurotransmitter release. In mature neurons, it is concentrated almost exclusively in presynaptic nerve endings. Here, we studied the subcellular localization of synapsin I during the development of rat cerebellar cortices by immunocytochemistry, using anti-synapsin I antibodies and found that during the development of rat cerebellar cortices it tentatively exists in the dendritic growth cones of immature internal granule cells and in the axonal growth cones of mossy fibers as well as mature presynaptic endings. Also, we found that synapsin I, in the axonal and dendritic growth cones does not necessarily associate with vesicles, but rather with fuzzy filamentous structures in the cytoplasm. In search of the structure of synapsin I in vivo, we employed the quick-freeze, deep-etch technique after immunogold labeling. Synapsin I seems to thereby connect synaptic vesicles or anchor them to cytoskeletons in presynaptic endings.  相似文献   

13.

Background

An early event in the neuropathology of prion and Alzheimer's diseases is the loss of synapses and a corresponding reduction in the level of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission. The molecular mechanisms involved in synapse degeneration in these diseases are poorly understood. In this study the process of synapse degeneration was investigated by measuring the synaptophysin content of cultured neurones incubated with the prion derived peptide (PrP82-146) or with Aβ1-42, a peptide thought to trigger pathogenesis in Alzheimer's disease. A pharmacological approach was used to screen cell signalling pathways involved in synapse degeneration.

Results

Pre-treatment with phospholipase A2 inhibitors (AACOCF3, MAFP and aristolochic acids) protected against synapse degeneration in cultured cortical and hippocampal neurones incubated with PrP82-146 or Aβ1-42. Synapse degeneration was also observed following the addition of a specific phospholipase A2 activating peptide (PLAP) and the addition of PrP82-146 or Aβ1-42 activated cytoplasmic phospholipase A2 within synapses. Activation of phospholipase A2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B, Hexa-PAF and CV6029) protected against synapse degeneration induced by PrP82-146, Aβ1-42 and PLAP. PAF facilitated the production of prostaglandin E2, which also caused synapse degeneration and pre-treatment with the prostanoid E receptor antagonist AH13205 protected against PrP82-146, Aβ1-42 and PAF induced synapse degeneration.

Conclusions

Our results are consistent with the hypothesis that PrP82-146 and Aβ1-42trigger abnormal activation of cytoplasmic phospholipase A2 resident within synapses, resulting in elevated levels of PAF and prostaglandin E2that cause synapse degeneration. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse degeneration seen during Alzheimer's or prion diseases.  相似文献   

14.
Many experimental studies indicate that some antiepileptic drugs possess neuroprotective properties in varied models of neuronal injury. Levetiracetam is a second-generation antiepileptic drug with a novel mechanism of action. In the present study, we evaluated the putative neuroprotective effect of levetiracetam on primary hippocampal cultures at seven day in vitro. Cell death was induced by incubation of neural cultures in hypoxic conditions over 24 hours. Neuronal injury was assessed by morphometric investigation of death/total ratio of neurons in light microscopy using Trypan blue staining and by evaluation of lactate dehydrogenase (LDH) release in the culture medium. Our results indicate that pre-conditioning of hippocampal cultures with high concentrations of levetiracetam (100 μM and 300 μM) protects neurons against hypoxia-induced death. Two-fold higher number of neurons remained viable as compared to control cultures without drug. Lack of neuroprotective action of the drug on hippocampal neural cultures was observed, when a low concentration (10 μM) of levetiracetam was used.  相似文献   

15.
Two human divalent cation transporters of the ZIP family, hZip1 and hZip2, homologous to Irt1 (Arabidopsis thaliana), the first identified member, have been described. They were shown by transfection into K562 cells to be localized at the plasma membrane and to mediate zinc uptake. Here we report a differential subcellular localization of hZip1 according to cell type. By transient expressions of EGFP-hZip1, FLAG-tagged or native hZip1, we observed that hZip1 has a vesicular localization in COS-7 cells or in several epithelial cell lines, corresponding partially to the endoplasmic reticulum. Using anti-hZip1 antibodies, we confirmed the intracellular localization of the endogenous protein in PC-3, a prostate cancer cell line.  相似文献   

16.
目的:探讨在大鼠海马神经元原代培养过程中,阿糖胞苷对培养神经元的影响。方法:将新生24 h大鼠,分离出海马组织,进行原代海马神经元培养,再将细胞分为阿糖胞苷组和对照组,阿糖胞苷组加入1μmol/L阿糖胞苷,通过检测神经元特异性标志物微管相关蛋白-2(Map-2)计算培养神经元的数量,通过台盼蓝染色法观察细胞的存活率。结果:培养第7天,阿糖胞苷组神经元数量为(11±3)个,对照组为(10±4)个,两组无明显差异;阿糖胞苷组神经元细胞在培养第14天时存活率为74%,培养第21天时存活率为49%,而对照组神经元14天时存活率为96%,21天存活率为88%,两组神经元存活率差异明显。结论:原代培养海马神经元时,阿糖胞苷对神经元产量及形态影响不明显,但是由于阿糖胞苷的毒性作用,明显缩短神经元的存活时间,影响长期培养神经元的存活率。  相似文献   

17.
A rapid small-scale procedure was set up to obtain highly purified preparations of lysosomes and plasma membranes from the homogenate of cerebellar granule cells differentiated in culture. It consisted in a centrifugation of the postnuclear fraction P2, on a Percoll gradient with formation of an upper and lower band. The upper band, upon centrifugation on 1 M sucrose, produced a light band lying on the top, that constituted the plasma membrane preparation. The upper band constituted the lysosome preparation. The plasma membrane preparation exhibited a 6-fold relative specific activity increase of Na+, K(+)-ATPase and 5'-nucleotidase, with negligible contamination by other subcellular markers; the lysosomal preparation exhibited a 30-fold relative specific activity increase of beta-galactosidase and beta-hexosaminidase, with virtually no contamination by other subcellular markers. Both the lysosome and plasma membrane preparations carried sialidase activity on MUB-NeuNAc and ganglioside GD1a. The sialidase activity on GD1a required the presence of Triton X-100 in both subcellular preparations; the sialidase activity on MUB-NeuNAc was markedly activated by albumin only in the lysosomes. The lysosomal sialidase had a unique optimal pH value, 3.9. The plasma membrane sialidase featured two values of optimal pH, one at 3.9, for both substrates and second at 5.4 and 6.0 for MUB-NeuNAc and GD1a, respectively. It is concluded that cerebellar granule cells differentiated in vitro possess one lysosomal sialidase and two plasma membrane sialidases, all of them active on ganglioside.  相似文献   

18.
19.
We report the immunohistochemical localization of protein kinase C isozymes (types I, II, and III) in the rabbit retina using the monospecific monoclonal antibodies MC-1a, MC-2a, and MC-3a. Using immunoblot analysis of partially purified protein kinase C preparations of rabbit retina, types II and III isozymes alone were detected. The activity of type III was the stronger. By light microscopic immunohistochemical analysis, retinal neurons were negative for type I and positive for type II and type III isozymes. Type II was more diffusely distributed through the retinal layers, but was distinctive in ganglion cells, bipolar cells, and outer segments. The immunoreactivity was stronger for type III isozyme, and it was observed in mop (rod) bipolar cells and amacrine cells. By using immunoelectron microscopy, the cytoplasm of the cell body, the axon, and dendrites of the mop bipolar cells were strongly immunoreactive for type III. The so-called rod bipolar cells were for the first time seen to form synapses with rod photoreceptor cells. These differential localizations of respective isozymes in retinal neurons suggest that each isozyme has a different site of function in each neuron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号