首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of certain enzymes related to the carbon assimilation pathway in whole leaves, mesophyll cell extracts, and bundle sheath extracts of the C4 plant Panicum miliaceum have been measured and compared on a chlorophyll basis. Enzymes of the C4 dicarboxylic acid pathway—phosphoenolpyruvate carboxylase and NADP-malic dehydrogenase—were localized in mesophyll cells. Carbonic anhydrase was also localized in mesophyll cell extracts. Ribose 5-phosphate isomerase, ribulose 5-phosphate kinase, and ribulose diphosphate carboxylase—enzymes of the reductive pentose phosphate pathway—were predominantly localized in bundle sheath extracts. High activities of aspartate and alanine transaminases and glyceraldehyde-3-P dehydrogenase were found about equally distributed between the photosynthetic cell types. P. miliaceum had low malic enzyme activity in both mesophyll and bundle sheath extracts.  相似文献   

2.
A seven-step sequential grinding procedure was applied to leaves of Atriplex rosea, Sorghum sudanense, and Spinacia oleracea to study the distribution of carboxylases and microbody enzymes. In the extracts from C4 species there were 7- to 10-fold reciprocal changes in specific activities of ribulose-1, 5-diphosphate carboxylase and phosphoenolpyruvate carboxylase. No such changes occurred in sequential extracts from spinach. No inhibitors of ribulose-1, 5-diphosphate carboxylase were detected when the mesophyll extracts of Sorghum were assayed together with spinach extracts. These results reaffirm the conclusion of others that phosphoenolpyruvate carboxylase is largely confined to the mesophyll in these species and ribulose-1, 5-diphosphate carboxylase to the bundle sheath. The specific activities of glycolate oxidase and hydroxypyruvate reductase in bundle sheath extracts were two to three times those in mesophyll fractions. Catalase behaved similarly in Atriplex rosea but in Sorghum the specific activity was virtually the same in all fractions. From the relative amounts of these enzymes present, and comparison with the data obtained from spinach, it is concluded that typical leaf peroxisomes are present in the bundle sheaths of both C4 species and in the mesophyll of Atriplex rosea. The relative enzyme activities in the mesophyll of Sorghum suggest that the microbodies there are of the non-specialized type found in many nongreen tissues. The activities of the microbody enzymes in the bundle sheath of Sorghum seem quite inadequate to support photorespiration.  相似文献   

3.
A mechanical isolation procedure was developed to study the respiratory properties of mitochondria from the mesophyll and bundle sheath tissue of Panicum miliaceum, a NAD-malic enzyme C4 plant. A mesophyll fraction and a bundle sheath fraction were obtained from young leaves by differential mechanical treatment. The purity of both fractions was about 80%, based on analysis of the cross-contamination of ribulose bisphosphate carboxylase activity and phosphoenolpyruvate carboxylase activity.

Mitochondria were isolated from the two fractions by differential centrifugation and Percoll density gradient centrifugation. The enrichment of mitochondria relative to chloroplast material was about 75-fold in both preparations.

Both types of mitochondria oxidized NADH and succinate with respiratory control. Malate oxidation in mesophyll mitochondria was sensitive to KCN and showed good respiratory control. In bundle sheath mitochondria, malate oxidation was largely insensitive to KCN and showed no respiratory control. The oxidation was strongly inhibited by salicylhydroxamic acid, showing that the alternative oxidase was involved. The bundle sheath mitochondria of this type of C4 species contribute to C4 photosynthesis through decarboxylation of malate. Malate oxidation linked to an uncoupled, alternative pathway may allow decarboxylation to proceed without the restraints which might occur via coupled electron flow through the cytochrome chain.

  相似文献   

4.
Arundinella hirta L. is a C4 plant having an unusual C4 leaf anatomy. Besides mesophyll and bundle sheath cells, A. hirta leaves have specialized parenchyma cells which look morphologically like bundle sheath cells but which lack vascular connections and are located between veins, running parallel to them. Activities of phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylases and phosphoenolpyruvate carboxykinase, NADP-and NAD-malic enzymes were determined for whole leaf extracts and isolated mesophyll protoplasts, specialized parenchyma cells, and bundle sheath cells. The data indicate that A. hirta is a NADP-malic enzyme type C4 species. In addition, specialized parenchyma cells and bundle sheath cells are enzymatically alike. Compartmentation of enzymes followed the C4 pattern with phosphoenolpyruvate carboxylase being restricted to mesophyll cells while ribulose-1,5-bisphosphate carboxylase and decarboxylating enzymes were restricted to bundle sheath and specialized parenchyma cells.  相似文献   

5.
6.
The intercellular distribution of assimilatory sulfate reduction enzymes between mesophyll and bundle sheath cells was analyzed in maize (Zea mays L.) and wheat (Triticum aestivum L.) leaves. In maize, a C4 plant, 96 to 100% of adenosine 5′-phosphosulfate sulfotransferase and 92 to 100% of ATP sulfurylase activity (EC 2.7.7.4) was detected in the bundle sheath cells. Sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8) were found in both bundle sheath and mesophyll cell types. In wheat, a C3 species, ATP sulfurylase and adenosine 5′-phosphosulfate sulfotransferase were found at equivalent activities in both mesophyll and bundle sheath cells. Leaves of etiolated maize plants contained appreciable ATP sulfurylase activity but only trace adenosine 5′-phosphosulfate sulfotransferase activity. Both enzyme activities increased in the bundle sheath cells during greening but remained at negligible levels in mesophyll cells. In leaves of maize grown without addition of a sulfur source for 12 d, the specific activity of adenosine 5′-phosphosulfate sulfotransferase and ATP sulfurylase in the bundle sheath cells was higher than in the controls. In the mesophyll cells, however, both enzyme activities remained undetectable. The intercellular distribution of enzymes would indicate that the first two steps of sulfur assimilation are restricted to the bundle sheath cells of C4 plants, and this restriction is independent of ontogeny and the sulfur nutritional status of the plants.  相似文献   

7.
A modified fluorescence microscope system was used to measure chlorophyll fluorescence and delayed light emission from mesophyll and bundle sheath cells in situ in fresh-cut sections from leaves of Panicum miliaceum L. The fluorescence rise in 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU)-treated leaves and the slow fluorescence kinetics in untreated leaves show that mesophyll chloroplasts have larger photosystem II unit sizes than do bundle sheath chloroplasts. The larger photosystem II units imply more efficient noncyclic electron transport in mesophyll chloroplasts. Quenching of slow fluorescence also differs between the cell types with mesophyll chloroplasts showing complex kinetics and bundle sheath chloroplasts showing a relatively simple decline. Properties of the photosynthetic system were also investigated in leaves from plants grown in soil containing elevated NaCl levels. As judged by changes in both fluorescence kinetics in DCMU-treated leaves and delayed light emission in leaves not exposed to DCMU, salinity altered photosystem II in bundle sheath cells but not in mesophyll cells. This result may indicate different ionic distributions in the two cell types or, alternatively, different responses of the two chloroplast types to environmental change.  相似文献   

8.
Mesophyll cells and bundle sheath strands were isolated from Cyperus rotundus L. leaf sections infiltrated with a mixture of cellulase and pectinase followed by a gentle mortar and pestle grind. The leaf suspension was filtered through a filter assembly and mesophyll cells and bundle sheath strands were collected on 20-μm and 80-μm nylon nets, respectively. For the isolation of leaf epidermal strips longer leaf cross sections were incubated with the enzymes and gently ground as above. Loosely attached epidermal strips were peeled off with forceps. The upper epidermis, which lacks stomata, could be clearly distinguished from the lower epidermis which contains stomata. Microscopic evidence for identification and assessment of purity is provided for each isolated tissue.Enzymes related to the C4-dicarboxylic acid cycle such as phosphoenolpyruvate carboxylase, malate dehydrogenase (NADP+), pyruvate, Pi dikinase were found to be localized, ≥98%, in mesophyll cells. Enzymes related to operating the reductive pentose phosphate cycle such as RuDP carboxylase, phosphoribulose kinase, and malic enzyme are distributed, ≥99%, in bundle sheath strands. Other photosynthetic enzymes such as aspartate aminotransferase, pyrophosphatase, adenylate kinase, and glyceraldehyde 3-P dehydrogenase (NADP+) are quite active in both mesophyll and bundle sheath tissues.Enzymes involved in photorespiration such as RuDP oxygenase, catalase, glycolate oxidase, hydroxypyruvate reductase (NAD+), and phosphoglycolate phosphatase are preferentially localized, ≥84%, in bundle sheath strands.Nitrate and nitrite reductase can be found only in mesophyll cells, while glutamate dehydrogenase is present, ≥96%, in bundle sheath strands.Starch- and sucrose-synthesizing enzymes are about equally distributed between the mesophyll and bundle sheath tissues, except that the less active phosphorylase was found mainly in bundle sheath strands. Fructose-1,6-diP aldolase, which is a key enzyme in photosynthesis and glycolysis leading to sucrose and starch synthesis, is localized, ≥90%, in bundle sheath strands. The glycolytic enzymes, phosphoglyceromutase and enolase, have the highest activity in mesophyll cells, while the mitochondrial enzyme, cytochrome c oxidase, is more active in bundle sheath strands.The distribution of total nutsedge leaf chlorophyll, protein, and PEP carboxylase activity, using the resolved leaf components, is presented. 14CO2 Fixation experiments with the intact nutsedge leaves and isolated mesophyll and bundle sheath tissues show that complete C4 photosynthesis is compartmentalized into mesophyll CO2 fixation via PEP carboxylase and bundle sheath CO2 fixation via RuDP carboxylase. These results were used to support the proposed pathway of carbon assimilation in C4-dicarboxylic acid photosynthesis and to discuss the individual metabolic characteristics of intact mesophyll cells, bundle sheath cells, and epidermal tissues.  相似文献   

9.
Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic efficiency. To explore this question, we developed a 3D reaction diffusion model of bundle‐sheath and connected mesophyll cells in a C3 rice leaf. Our results show that integrating a C4 metabolic pathway into rice leaves with a C3 metabolism and mesophyll structure may lead to an improved photosynthesis under current ambient CO2 concentration. We analysed a number of physiological factors that influence the CO2 uptake rate, which include the chloroplast surface area exposed to intercellular air space, bundle‐sheath cell wall thickness, bundle‐sheath chloroplast envelope permeability, Rubisco concentration and the energy partitioning between C3 and C4 cycles. Among these, partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle‐sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3–C4 leaf. The implications of the results for the sequence of C4 evolution are also discussed.  相似文献   

10.
A procedure is described for isolating and purifying mesophyll protoplasts and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Following enzymic digestion of leaf tissue, mesophyll protoplasts and bundle sheath protoplasts are released and purified by density centrifugation. The lower density of mesophyll protoplasts allowed rapid separation of the two protoplast types. Evidence for separation of mesophyll protoplasts and bundle sheath protoplasts (up to 95% purity) is provided from light microscopy (based on size difference in both chloroplasts and protoplasts), levels of marker enzymes in the preparations (i.e. pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase for mesophyll and ribulose-1,5-bisphosphate carboxylase for bundle sheath), and differences in substrate-dependent O2 evolution by chloroplasts isolated from protoplasts.  相似文献   

11.
The activity of ATP sulfurylase, cysteine synthase, and cystathionine β-lyase was measured in crude leaf extracts, bundle sheath strands, and mesophyll and bundle sheath chloroplasts to determine the location of sulfate assimilation of C4 plant leaves. Almost all the ATP sulfurylase activity was located in the bundle sheath chloroplasts while cysteine synthase and cystathionine β-lyase activity was located, in different proportions, in both chloroplast types.

A new spectrophotometric assay for measuring ATP sulfurylase activity is also described.

  相似文献   

12.
The amino terminal sequence of the spinach (Spinacia oleracea L. cv Bloomsdale Long Standing) leaf cytoplasmic phosphorylase was determined and shown to have little similarity to the known sequence of the potato tuber phosphorylase. The antigenic reaction of spinach chloroplast phosphorylase and rabbit muscle phosphorylase a to antiserum prepared against spinach leaf cytoplasmic phosphorylase was tested. Neither phosphorylase gave a positive reaction when tested by immunodiffusion or neutralization of enzyme activity. The two spinach phosphorylases were assayed throughout the growth of the plant. Activity of cytoplasmic phosphorylase increased 4- to 8-fold at 30 to 35 days from sowing. Enzyme protein levels, as measured by antibody neutralization, increased by a similar amount. There was no corresponding increase in chloroplast phosphorylase activity. The chloroplast phosphorylase varied in parallel with the chloroplast enzyme ADPglucose pyrophosphorylase. Starch levels were high during the earlier stages of growth and then fell to a constant low level just before the increase in cytoplasmic phosphorylase. The results are discussed with respect to the relationship and functions of the two phosphorylases.  相似文献   

13.
14.
Intact mesophyll and bundle sheath chloroplasts wee isolated from the NADP-malic enzyme type C4 plants maize, sorghum (monocots), and Flaveria trinervia (dicot) using enzymic digestion and mechanical isolation techniques. Bundle sheath chloroplasts of this C4 subgroup tend to be agranal and were previously reported to be deficient in photosystem II activity. However, following injection of intact bundle sheath chloroplasts into hypotonic medium, thylakoids had high Hill reaction activity, similar to that of mesophyll chloroplasts with the Hill oxidants dichlorophenolindophenol, p-benzoquinone, and ferricyanide (approximately 200 to 300 micromoles O2 evolved per mg chlorophyll per hour). In comparison to that of mesophyll chloroplasts, the Hill reaction activity of bundle sheath chloroplasts of maize and sorghum was labile and lost activity during assay. Bundle sheath chloroplasts of maize also exhibited some capacity for 3-phosphoglycerate dependent O2 evolution (29 to 58 micromoles O2 evolved per milligram chlorophyll per hour). Both the mesophyll and bundle sheath chloroplasts were equally effective in light dependent scavenging of hydrogen peroxide. The results suggest that both chloroplast types have noncyclic electron transport and the enzymology to reduce hydrogen peroxide to water. The activities of ascorbate peroxidase from these chloroplast types was consistent with their capacity to scavenge hydrogen peroxide.  相似文献   

15.
Mature leaves of Cyperus rotundus, Cyperus polystachyos, Digitaria decumbens, and Digitaria sanguinalis were separated, using pectinase and cellulase, into pure preparations of mesophyll cells and bundle sheath strands. Assays on these distinct leaf cell types show a clear compartmentation of phosphoenolpyruvate carboxylase, >98%, into mesophyll cells and of ribulose-1, 5-diphosphate carboxylase and malic enzyme, >98%, into the bundle sheath strands. The results clearly establish that the major CO2 uptake in mesophyll cells is via a β-carboxylation and that both a decarboxylation and a carboxylation reaction occurs in the bundle sheath strands of plants using C4-dicarboxylic acid photosynthesis.  相似文献   

16.
Two-dimensional electrophoresis was performed on proteins of bundle sheath and mesophyll cells isolated from the C4 grass Digitaria sanguinalis (L.) Scop. Two-dimensional maps of these proteins were constructed and ribulose-1,5-biphosphate carboxylase and phosphoenolpyruvate carboxylase were identified. Of the total number of proteins found in both cell types, 36% were found only in bundle sheath cells, 17% only in mesophyll cells, and 47% in both cell types. By comparison, the distributions of 48 enzymes assayed in these cell types were 35%, 21%, and 44%, respectively.

Protein patterns were also compared with C4 plants exhibiting different decarboxylation pathways and, in both bundle sheath and mesophyll cells, proteins were found which were unique to each species. Bundle sheath proteins of one C4 species were found to be more like bundle sheath proteins of another C4 species than like mesophyll proteins of the same species.

  相似文献   

17.
Lipid compositions of undifferentiated maize (Zea mays) chloroplasts, capable of fixing CO2, were compared with the lipid compositions of mature chloroplasts, which do not fix CO2, located in both the mesophyll and bundle sheath cells. The major lipids found in all three chloroplast types were the glycolipids, monogalactosyl diglyceride and digalactosyl diglyceride, followed by decreasing amounts of sulfolipid, phosphatidyl glycerol, phosphatidyl choline, phosphatidyl inositol, and diphosphatidyl glycerol. Quantitative differences in lipid components were observed among the chloroplast types. The mesophyll and bundle sheath maize chloroplasts differed in their chlorophyll a/chlorophyll b ratios (2.27 and 4.13 respectively) and their content of glycolipid relative to chlorophyll (51.8% glycolipid to 20.9% chlorophyll and 84.5% glycolipid to 10.1% chlorophyll respectively). A comparison between the lipid compositions of maize mesophyll chloroplasts and mesophyll chloroplasts obtained from spinach, sugar beet, and tobacco showed many similarities.  相似文献   

18.
Mayne BC 《Plant physiology》1971,47(5):600-605
Isolated mesophyll cells and bundle sheath cells of Digitaria sanguinalis were used to study the light-absorbing pigments and electron transport reactions of a plant which possesses the C4-dicarboxylic acid cycle of photosynthesis. Absorption spectra and chlorophyll determinations are presented showing that mesophyll cells have a chlorophyll a-b ratio of about 3.0 and bundle sheath cells have a chlorophyll a-b ratio of about 4.5. The absorption spectrum of bundle sheath cells has a greater absorption in the 700 nm region at liquid nitrogen temperature, and there is a relatively greater amount of a pigment absorbing at 670 nm in the bundle sheath cells compared to the mesophyll cells. Fluorescence emission spectra, at liquid nitrogen temperature, of mesophyll cells have a fluorescence 730 nm-685 nm ratio of about 0.82 and bundle sheath cells have a ratio of about 2.84. The reversible light-induced absorption change in the region of P700 absorption is similar in both cell types but bundle sheath cells exhibit about twice as much total P700 change as mesophyll cells on a total chlorophyll basis. The delayed light emission of bundle sheath cells is about one-half that of mesophyll cells. Both mesophyll cells and bundle sheath cells evolve oxygen in the presence of Hill oxidants with the mesophyll cells exhibiting about twice the activity of bundle sheath cells, and both activities are inhibited by 1 μM 3-(3,4-dichlorophenyl)-1, 1-dimethylurea. Ferredoxin nicotinamide adenine dinucleotide phosphate reductase is present in both cells although it is about 3- or 4-fold higher in mesophyll cells than in bundle sheath cells. Glyceraldehyde 3-P dehydrogenases, both nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, are equally distributed in the two cell types on a chlorophyll basis. Malic enzyme is localized in the bundle sheath cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号