首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some 2-substituted-(2'-aminophenyl)-4-thioxohydantoic acids (o-amino PTC-amino acids) have antinociceptive activity when administered (icv) alone (IC50 = 0.04-0.87 microM/animal) and show a striking prolongation of the antinociceptive action of (D-Ala-2 D-Leu5)-enkephalin (DADL) in combination. The effects are thought to be mediated via opioid receptors since they are naloxone-reversible. Although inhibitors of the enkephalin degrading puromycin-insensitive, bestatin-sensitive aminopeptidase (possibly aminopeptidase M) their action is weak (IC50 = 32 microM leucine, 536 microM, glycine) and they might be considered to have a direct antinociceptive effect on opioid receptors. The titled compounds constitute novel 'lead' compounds for the development of potent aminopeptidase M inhibitors.  相似文献   

2.
Several penicillins have been found to have pro-antinociceptive properties and also to be enkephalinase (neutral endopeptidase-24.11) inhibitors, carfecillin being the most potent. Carfecillin i.c.v. (but not i.p.) had significant antinociceptive activity in the mouse tail immersion test and completely suppressed abdominal constrictions (acetic acid) in mice (IC50 = 23 micrograms/animal). In combination with (D-Ala2-D-leu5)-enkephalin (DADL) i.c.v. in the abdominal constriction test the complete protection observed was reversed by the opioid receptor antagonist naltrexone. Carfecillin was a competitive inhibitor of enkephalinase from mouse brain striata (IC50 = 207 + 57 nM, cf thiorphan 10.6 +/- 1.9 nM) but did not inhibit other known enkephalin- degrading enzymes. Carfecillin provides a new lead structure for the development of more potent enkephalinase inhibitors.  相似文献   

3.
Bestatin, an inhibitor of aminopeptidases, was also a potent inhibitor of leukotriene (LT) A4 hydrolase. On isolated enzyme its effects were immediate and reversible with a Ki = 201 +/- 95 mM. With erythrocytes it inhibited LTB4 formation greater than 90% within 10 min; with neutrophils it inhibited LTB4 formation by only 10% during the same period, increasing to 40% in 2 h. Bestatin inhibited LTA4 hydrolase selectively; neither 5-lipoxygenase nor 15-lipoxygenase activity in neutrophil lysates was affected. Purified LTA4 hydrolase exhibited an intrinsic aminopeptidase activity, hydrolyzing L-lysine-p-nitroanilide and L-leucine-beta-naphthylamide with apparent Km = 156 microM and 70 microM and Vmax = 50 and 215 nmol/min/mg, respectively. Both LTA4 and bestatin suppressed the intrinsic aminopeptidase activity of LTA4 hydrolase with apparent Ki values of 5.3 microM and 172 nM, respectively. Other metallohydrolase inhibitors tested did not reduce LTA4 hydrolase/aminopeptidase activity, with one exception; captopril, an inhibitor of angiotensin-converting enzyme, was as effective as bestatin. The results demonstrate a functional resemblance between LTA4 hydrolase and certain metallohydrolases, consistent with a molecular resemblance at their putative Zn2(+)-binding sites. The availability of a reversible, chemically stable inhibitor of LTA4 hydrolase may facilitate investigations on the role of LTB4 in inflammation, particularly the process termed transcellular biosynthesis.  相似文献   

4.
In mammals, dihydroorotase is part of a trifunctional protein, dihydroorotate synthetase, which catalyzes the first three reactions of de novo pyrimidine biosynthesis. Dihydroorotase catalyzes the formation of a peptide-like bond between the terminal ureido nitrogen and the beta-carboxyl group of N-carbamyl-L-aspartate to yield heterocyclic L-dihydroorotate. A variety of evidence suggests that dihydroorotase may have a catalytic mechanism similar to that of a zinc protease [Christopherson, R. I., & Jones, M. E. (1980) J. Biol. Chem. 255, 3358-3370]. Tight-binding inhibitors of the zinc proteases, carboxypeptidase A, thermolysin, and angiotensin-converting enzyme have been synthesized that combine structural features of the substrates with a thiol or carboxyl group in an appropriate position to coordinate a zinc atom bound at the catalytic site. We have synthesized (4R)-2-oxo-6-thioxohexahydropyrimidine-4-carboxylate (L-6-thiodihydroorotate) and have found that this analogue is a potent competitive inhibitor of dihydroorotase with a dissociation constant (Ki) in the presence of excess Zn2+ ion of 0.17 +/- 0.02 microM at pH 7.4. The potency of inhibition by L-6-thiodihydroorotate in the presence of divalent metal ions decreases in the order Zn2+ greater than Ca2+ greater than Co2+ greater than Mn2+ greater than Ni2+; L-6-thiodihydroorotate alone is less inhibitory and has a Ki of 0.85 +/- 0.14 microM. 6-Thioorotate has a Ki of 82 +/- 8 microM which decreases to 3.8 +/- 1.4 microM in the presence of Zn2+. Zn2+ alone is a moderate inhibitor of dihydroorotase and does not enhance the potency of other inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Bestatin and high concentration of puromycin increase the depressing effect of [Met] enkephalin on the twitch response of the electrically stimulated guinea-pig ileum. Thiorphan (enkephalinase A inhibitor) is hardly effective, but phelorphan (mercapto-acetyl-Phe-Phe) a newly synthesized enzyme-inhibitor which effectively inhibits the enkephalinase A, enkephalinase B and soluble aminopeptidase activity, potentiates the effect of enkephalin dose-dependently and in low concentrations (0.01-1 microM). Enkephalinase A, though present in these tissues, is not functional under the conditions of the test, because it is inhibited by the physiological buffer itself. These results demonstrate that enkephalinase B and the membrane bound aminopeptidase, but not the soluble aminopeptidase or enkephalinase A hydrolyse enkephalins in the isolated guinea-pig ileum.  相似文献   

6.
New carboxylalkyl compounds derived from Phe-Leu and corresponding to the general formula C6H5-CH2-CH(R)CO-L.Leu with R = -COOH, 3, R = -CH2-COOH, 4, R = -NH-CH2-COOH, 5, R = -NH-(CH2)2-COOH, 6, have been found to inhibit the breakdown of the Gly3-Phe4 bond of [3H] Leu-enkephalin or [3H]D.Ala2-Leu-enkephalin resulting from the action of the mouse striatal metallopeptidases: "enkephalinase" or angiotensin-converting enzyme (A.C.E.). The carboxyl coordinating ability of the Zn atom seems to be significantly higher in ACE than in "enkephalinase". Moreover, IC50 values against "enkephalinase" were found in the same range whatever the length of the chain bearing the carboxyl group whereas a well-defined position of this group with respect to the Zn atom is required for strong ACE inhibition. These features suggest a larger degree of freedom of the carboxyalkyl moieties within the active site of "enkephalinase". Therefore the differential recognition of active sites of both peptidases leads to: i) N-(carboxymethyl)-L-Phe-L-Leu, 5, a competitive inhibitor of "enkephalinase" (KI = 0.7 microM) and ACE (KI = 1.2 microM) which could be used as mixed inhibitor for both enzymes; ii) N-[(R,S)-2-carboxy, 3-benzylpropanoyl]-L-Leucine, 3, a full competitive inhibitor of "enkephalinase" (KI = 0.34 microM) which does not interact with ACE (IC50 greater than 10,000 microM). This compound can be considered as the first example of a new series of highly potent and specific "enkephalinase" inhibitors.  相似文献   

7.
C Gros  B Giros  J C Schwartz 《Biochemistry》1985,24(9):2179-2185
Two membrane-bound enkephalin-hydrolyzing aminopeptidase activities were partially purified from rat brain membranes. The first, which represents 90% of the total activity, was highly sensitive to both puromycin (Ki = 1 microM) and bestatin (Ki = 0.5 microM). The second was inhibited much more by bestatin (Ki = 4 microM) than by puromycin (Ki = 100 microM). The latter puromycin-insensitive aminopeptidase was found to resemble aminopeptidase M purified from rat kidney brush border membranes. Both displayed the same purification pattern and the same kinetic constants of substrates and inhibitors, and both were similarly inactivated by metal chelating agents. Moreover, antibodies raised in rabbits against rat kidney aminopeptidase M inhibited the aminopeptidase activities of both kidney and brain puromycin-insensitive enzymes at similar dilutions, while the brain puromycin-sensitive aminopeptidase activity was not affected. Thus, aminopeptidase M (EC 3.4.11.2) was found to occur in brain, and the role of this enzyme in inactivating endogenous enkephalins released from their neuronal stores is suggested.  相似文献   

8.
Acyclovir transport into human erythrocytes   总被引:2,自引:0,他引:2  
The mechanism of transport of the antiviral agent acyclovir (ACV) into human erythrocytes has been investigated. Initial velocities of ACV influx were determined with an "inhibitor-stop" assay that used papaverine to inhibit ACV influx rapidly and completely. ACV influx was nonconcentrative and appeared to be rate-saturable with a Km of 260 +/- 20 microM (n = 8). However, two lines of evidence indicate that ACV permeates the erythrocyte membrane by means other than the nucleoside transport system: 1) potent inhibitors (1.0 microM) of nucleoside transport (dipyridamole, 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and dilazep) had little (less than 8% inhibition) or no effect upon the influx of 5.0 microM ACV; and 2) a 100-fold molar excess of several purine and pyrimidine nucleosides had no inhibitory effect upon the influx of 1.0 microM ACV. However, ACV transport was inhibited competitively by adenine (Ki = 9.5 microM), guanine (Ki = 25 microM), and hypoxanthine (Ki = 180 microM). Conversely, ACV was a competitive inhibitor (Ki = 240-280 microM) of the transport of adenine (Km = 13 microM), guanine (Km = 37 microM), and hypoxanthine (Km = 180 microM). Desciclovir and ganciclovir, two compounds related structurally to ACV, were also found to be competitive inhibitors of acyclovir influx (Ki = 1.7 and 1.5 mM, respectively). These results indicate that ACV enters human erythrocytes chiefly via the same nucleobase carrier that transports adenine, guanine, and hypoxanthine.  相似文献   

9.
We determined if any naturally occurring peptides could act as substrates or inhibitors of the bifunctional, Zn2+ metalloenzyme LTA4 hydrolase/aminopeptidase (E.C.3.3.2.6). Several opioid peptides including met5-enkephalin, leu5-enkephalin, dynorphin1-6, dynorphin1-7, and dynorphin1-8 competitively inhibited the hydrolysis of L-proline-p-nitroanilide by leukotriene A4 hydrolase/aminopeptidase, consistent with an interaction at its active site. The enzyme catalyzed the N-terminal hydrolysis of tyrosine from met5-enkephalin with Km = 450 +/- 58 microM and Vmax = 4.9 +/- 0.6 nmol-hr-1-ug-1 and from leu5-enkephalin with Km = 387 +/- 90 microM and Vmax = 6.2 +/- 2.5 nmol-hr-1-ug-1. Bestatin, captopril and carnosine inhibited the hydrolysis of the enkephalins. It is noteworthy that the bifunctional catalytic traits of this enzyme include generation of an hyperalgesic substance, LTB4, and inactivation of analgesic opioid peptides.  相似文献   

10.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50 = 0.600 +/- 0.009 microM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50 = 1.326 +/- 0.013 microM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50 = 1.564 +/- 0.065 microM) also showed comparable inhibitory activity to that of allopurinol (IC50 = 0.776 +/- 0.012 microM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophenolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound was inhibiting enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

11.
Abstract

Some 2-substituted-(2′-aminophenyl)-4-thioxohydantoic acids (o-amino PTC-amino acids) have antinociceptive activity when administered (icv) alone (IC50 = 0.04-0.87 μM/animal) and show a striking prolongation of the antinociceptive action of (D-Ala-2 D-Leu5)-enkephalin (DADL) in combination. The effects are thought to be mediated via opioid receptors since they are naloxone-reversible. Although inhibitors of the enkephalin degrading puromycin-insensitive, bestatin-sensitive aminopeptidase (possibly aminopeptidase M) their action is weak (IC50 = 32μM leucine, 536μM, glycine) and they might be considered to have a direct antinociceptive effect on opioid receptors. The titled compounds constitute novel ‘lead’ compounds for the development of potent aminopeptidase M inhibitors.  相似文献   

12.
With the use of a continuous spectrophotometric assay and initial rates determined by the method of Waley [Biochem. J. (1981) 193, 1009-1012] methotrexate was found to be a non-competitive inhibitor, with Ki(intercept) = 72 microM and Ki(slope) = 41 microM, of 5-aminoimidazole-4-carboxamide ribotide transformylase, whereas a polyglutamate of methotrexate containing three gamma-linked glutamate residues was a competitive inhibitor, with Ki = 3.15 microM. Pentaglutamates of folic acid and 10-formylfolic acid were also competitive inhibitors of the transformylase, with Ki values of 0.088 and 1.37 microM respectively. Unexpectedly, the pentaglutamate of 10-formyldihydrofolic acid was a good substrate for the transformylase, with a Km of 0.51 microM and a relative Vmax. of 0.72, which compared favourably with a Km of 0.23 microM and relative Vmax. of 1.0 for the tetrahydro analogue. An analysis of the progress curve of the transformylase-catalysed reaction with the above dihydro coenzyme revealed that the pentaglutamate of dihydrofolic acid was a competitive product inhibitor, with Ki = 0.14 microM. The continuous spectrophotometric assay for adenosine deaminase based on change in the absorbance at 265 nm was shown to be valid with adenosine concentrations above 100 microM, which contradicts a previous report [Murphy, Baker, Behling & Turner (1982) Anal. Biochem. 122, 328-337] that this assay was invalid above this concentration. With the spectrophotometric assay, 5-aminoimidazole-4-carboxamide riboside was found to be a competitive inhibitor of adenosine deaminase, with (Ki = 362 microM), whereas the ribotide was a competitive inhibitor of 5'-adenylate deaminase, with Ki = 1.01 mM. Methotrexate treatment of susceptible cells results in (1) its conversion into polyglutamates, (2) the accumulation of oxidized folate polyglutamates, and (3) the accumulation of 5-aminoimidazole-4-carboxamide riboside and ribotide. The above metabolic events may be integral elements producing the cytotoxic effect of this drug by (1) producing tighter binding of methotrexate to folate-dependent enzymes, (2) producing inhibitors of folate-dependent enzymes from their tetrahydrofolate coenzymes, and (3) trapping toxic amounts of adenine nucleosides and nucleotides as a result of inhibition of adenosine deaminase and 5'-adenylate deaminase respectively.  相似文献   

13.
Through the development of a new chemical strategy, aminophosphinic peptides containing a pseudoglutamyl residue (Glu Psi(PO2-CH2)Leu-Xaa) in the N-terminal position were synthesized and evaluated as inhibitors of aminopeptidase A (APA). The most potent inhibitor developed in this study, Glu Psi(PO2-CH2)Leu-Ala, displayed a Ki value of 0.8 nM for APA, but was much less effective in blocking aminopeptidase N (APN) (Ki = 31 microM). The critical role of the glutamyl residue in this phosphinic peptide, both in potency and selectivity, is exemplified by the P1 position analogue, Ala Psi(PO2-CH2)Leu-Ala, which exhibited a Ki value of 0.9 microM toward APA but behaved as a rather potent inhibitor of APN (Ki = 25 nM). Glu Psi(PO2-CH2)Leu-Xaa peptides are poor inhibitors of angiotensin converting enzyme (Ki values higher than 1 microM). Depending on the nature of the Xaa residue, the potency of these phosphinic peptides toward neutral endopeptidase 24-11 varied from 50 nM to 3 microM. In view of the in vivo role of APA in the formation of brain angiotensin III, one of the main effector peptides of the renin angiotensin system in the central nervous system, highly potent and selective inhibitors of APA may find important therapeutic applications soon.  相似文献   

14.
Fusarium graminearum A 3/5 possesses a high affinity system (Km = 32 +/- 8 microM; mean +/- SE) for uptake of choline, which was shown to be energy-dependent and constitutive. The maximum rate of choline uptake by this system was repressed by ammonia and glucose, showing a three-fold increase in maximum activity after nitrogen (2 h) or carbon (4 h) starvation. The system was highly specific for choline with only dimethylethanolamine (Ki = 198 +/- 29 microM), betaine aldehyde (Ki = 95 +/- 14 microM) and chlorocholine (Ki = 352 +/- 40 microM) acting as competitive inhibitors. Hemicholinium-3 acted as a mixed (non-competitive) inhibitor (KIES = 1.9 +/- 0.6 microM; KIE = 3.6 +/- 1.9 microM).  相似文献   

15.
Ro JS  Lee SS  Lee KS  Lee MK 《Life sciences》2001,70(6):639-645
The inhibitory effects of coptisine, a protoberberine isoquinoline alkaloid, on type A and type B monoamine oxidase (MAO-A and MAO-B) activities in mouse brain were investigated. Coptisine showed an inhibitory effect on MAO-A activity in a concentration-dependent manner using a substrate kynuramine, but coptisine did not inhibit MAO-B activity. Coptisine exhibited 54.3% inhibition of MAO-A activity at 2 microM. The values of Km and Vmax of MAO-A were 151.9 +/- 0.6 microM and 0.40 +/- 0.03 nmol/min/mg protein, respectively (n=5). Coptisine competitively inhibited MAO-A activity with kynuramine. The Ki value of coptisine was 3.3 microM. The inhibition of MAO-A by coptisine was found to be reversible by dialysis of the incubation mixture. These results suggest that coptisine is a potent reversible inhibitor of MAO-A, and that coptisine functions to regulate the catecholamine content.  相似文献   

16.
The tyrosinase inhibitory potential of seventeen synthesized oxazolone derivatives has been evaluated and their structure-activity relationships developed in the present work. All the synthesized derivatives, 3-19, demonstrated excellent in vitro tyrosinase inhibitory properties having IC50 values in the range of 1.23+/-0.37-17.73+/-2.69 microM, whereas standard inhibitors l-mimosine and kojic acid have IC50 values 3.68+/-0.02 and 16.67+/-0.52 microM,, respectively. Compounds 4-8 having IC50 values 3.11+/-0.95, 3.51+/-0.25, 3.23+/-0.66, 1.23 +/- 0.37, and 2.15+/-0.75, respectively, were found to be very active members of the series, even better than both the standard inhibitors. However, compounds 3, 9-11, 13, 14, 16, 17, and 19 were found to be better than kojic acid but not l-mimosine. (2-Methyl-4-[E,2Z)-3-phenyl-2-propenyliden]-1,3-oxazol-5(4H)-one (7) bearing a cinnamyol residue at C-4 of oxazolone moiety and an IC50 = 1.23+/-0.37 microM was found to be the most active one among all tested compounds. These studies reveal that the substitution of functional group (s) at C-4 and C-2 positions plays a vital role in the activity of this series of compounds. It is concluded that compound 7 may act as a potential lead molecule to develop new drugs for the treatment of tyrosinase based disorders.  相似文献   

17.
The yeast Rhodotorula glutinis (Rhodosporidium toruloides) is capable of accumulative transport of a wide variety of monosaccharides. Initial velocity studies of the uptake of 2-deoxy-D-glucose were consistent with the presence of at least two carriers for this sugar in the Rhodotorula plasma membrane. Non-linear regression analysis of the data returned maximum velocities of 0.8 +/- 0.2 and 2.0 +/- 0.2 nmol/min per mg (wet weight) and Km values of 18 +/- 4 and 120 +/- 20 microM, respectively, for the two carriers. Kinetic studies of D-glucose transport also revealed two carriers with maximum velocities of 1.1 +/- 0.4 and 2.4 +/- 0.4 nmol/min per mg (wet weight) and Km values of 12 +/- 3 and 55 +/- 12 microM. As expected, 2-deoxy-D-glucose was a competitive inhibitor of D-glucose transport. Ki values for the inhibition were 16 +/- 8 and 110 +/- 40 microM. These Ki values were in good agreement with the Km values for 2-deoxy-D-glucose transport. D-Xylose, the 5-deoxymethyl analog of D-glucose, appears to utilize the D-glucose/2-deoxy-D-glucose carriers. This pentose was observed to be a competitive inhibitor of D-glucose (Ki values = 0.14 +/- 0.06 and 5.6 +/- 1.6 mM) and 2-deoxy-D-glucose (Ki values = 0.15 +/- 0.07 and 4.6 +/- 1.2 mM) transport.  相似文献   

18.
Both components, E and S, of the adenosylcobalamin-(coenzyme B12)-dependent glutamate mutase from Clostridium cochlearium were purified. Component S (16 kDa) must be added to component E to obtain activity, although the latter contains substoichiometric amounts of component S besides the major 50-kDa subunit. The enzyme proved to be very similar to that of C. tetanomorphum as described by Barker et al. [Barker, H. A., Rooze, V., Suzuki, F. & Iodice, A. A. (1964) J. Biol. Chem. 239, 3260-3266] but component E of C. cochlearium was more stable and led to the first pure preparation. The pink component E showed a cobamide-like absorbance spectrum with a characteristic maximum at 470 nm indicating the presence of a cob(II)amide, probably Co alpha-[alpha-(aden-9-yl)]-cob(II)amide. A typical cob(II)amide signal at g = 2.23 with hyperfine and superhyperfine splitting was observed by EPR spectroscopy. A cobamide content of about 0.43 mol/mol 50-kDa subunit was determined by cyanolysis. Substitution of the migrating hydrogen at C-4 of glutamate by fluorine yielded the potent competitive inhibitor (2S,4S)-4-fluoroglutamate (Ki = 70 microM). (2R,3RS)-3-Fluoroglutamate (Ki = 600 microM) was also inhibitory. The competitive inhibition by 2-methyleneglutarate (Ki = 400 microM) and (S)-3-methylitaconate (Ki = 100 microM) but not by (RS)-2-methylglutarate suggested the transient formation of an sp2 center during catalysis. However, the presence of an N-terminal pyruvoyl residue was excluded and no evidence for the participation of another electrophilic center in the reaction was obtained.  相似文献   

19.
Metabolism of opioid peptides by cerebral microvascular aminopeptidase M   总被引:2,自引:0,他引:2  
Aminopeptidase M (EC 3.4.11.2), which can degrade low molecular weight opioid peptides, has been reported in both peripheral vasculature and in the CNS. Thus, we have studied the metabolism of opioid peptides by membrane-bound aminopeptidase M derived from cerebral microvessels of hog and rabbit. Both hog and rabbit microvessels were found to contain membrane-bound aminopeptidase M. At neutral pH, microvessels preferentially degraded low molecular weight opioid peptides by hydrolysis of the N-terminal Tyr1-Gly2 bond. Degradation was inhibited by amastatin (I50 = 0.2 microM) and bestatin (10 microM), but not by a number of other peptidase inhibitors including captopril and phosphoramidon. Rates of degradation were highest for the shorter peptides (Met5- and Leu5-enkephalin) whereas beta-endorphin was nearly completely resistant to N-terminal hydrolysis. Km values for the microvascular aminopeptidase also decreased significantly with increasing peptide length (Km = 91.3 +/- 4.9 and 28.9 +/- 3.5 microM for Met5-enkephalin and Met5-enkephalin-Arg6-Phe7, respectively). Peptides known to be present within or in close proximity to cerebral vessels (e.g., neurotensin and substance P) competitively inhibited enkephalin degradation (Ki = 20.4 +/- 2.5 and 7.9 +/- 1.6 microM, respectively). These data suggest that cerebral microvascular aminopeptidase M may play a role in vivo in modulating peptide-mediated local cerebral blood flow, and in preventing circulating enkephalins from crossing the blood-brain barrier.  相似文献   

20.
5-[125I]Iodo-2'-deoxyuridine (IdUrd) has been shown to serve as a permeant for the nucleoside transport system of human erythrocytes and to be matabolically inert in these cells. Linear initial velocities were obtained at 20 degrees C for 125IdUrd transport, yielding a Km of 73 +/- 18 microM (n = 6). Low-affinity inhibitors of 125IdUrd transport, such as adenosine (Ki = 32 +/- 2 microM, n = 2), could be characterized by Michaelis-Menten kinetics. However, high-affinity inhibitors, such as 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, caused nonlinear initial velocities when added to the cells simultaneously with 125IdUrd. Conditions were defined (viz., 20-min pretreatment of cells with test compound followed by 5.0-min incubation with 1.0 microM 125IdUrd, all at 20 degrees C) whereby high-affinity inhibitors of IdUrd transport can be identified and evaluated according to their 50% inhibitory concentrations. The use of 125IdUrd as permeant greatly expedites the testing of compounds as inhibitors of nucleoside transport by allowing the cell pellets generated in these assays to be monitored directly in a gamma spectrometer, thereby circumventing the solubilization and decolorization of cell pellets required by assays that use 3H- or 14C-labeled nucleoside permeants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号