首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.  相似文献   

2.
Stember JN  Andersen O 《PloS one》2011,6(2):e15563
Membrane elastic properties, which are subject to alteration by compounds such as cholesterol, lipid metabolites and other amphiphiles, as well as pharmaceuticals, can have important effects on membrane proteins. A useful tool for measuring some of these effects is the gramicidin A channels, which are formed by transmembrane dimerization of non-conducting subunits that reside in each bilayer leaflet. The length of the conducting channels is less than the bilayer thickness, meaning that channel formation is associated with a local bilayer deformation. Electrophysiological studies have shown that the dimer becomes increasingly destabilized as the hydrophobic mismatch between the channel and the host bilayer increases. That is, the bilayer imposes a disjoining force on the channel, which grows larger with increasing hydrophobic mismatch. The energetic analysis of the channel-bilayer coupling is usually pursued assuming that each subunit, as well as the subunit-subunit interface, is rigid. Here we relax the latter assumption and explore how the bilayer junction responds to changes in this disjoining force using a simple one-dimensional energetic model, which reproduces key features of the bilayer regulation of gramicidin channel lifetimes.  相似文献   

3.
Ingolfsson HI  Koeppe RE  Andersen OS 《Biochemistry》2007,46(36):10384-10391
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is the major bioactive compound in turmeric (Curcuma longa) with antioxidant, antiinflammatory, anticarcinogenic, and antimutagenic effects. At low muM concentrations, curcumin modulates many structurally and functionally unrelated proteins, including membrane proteins. Because the cell membranes' lipid bilayer serves as a gate-keeper and regulator of many cell functions, we explored whether curcumin modifies general bilayer properties using channels formed by gramicidin A (gA). gA channels form when two monomers from opposing monolayers associate to form a conducting dimer with a hydrophobic length that is less than the bilayer hydrophobic thickness; gA channel formation thus causes a local bilayer thinning. The energetic cost of this bilayer deformation alters the gA monomer <--> dimer equilibrium, which makes the channels' appearance rate and lifetime sensitive to changes in bilayer material properties, and the gA channels become probes for changes in bilayer properties. Curcumin decreases bilayer stiffness, increasing both gA channel lifetimes and appearance rates, meaning that the energetic cost of the gA-induced bilayer deformation is reduced. These results show that curcumin may exert some of its effects on a diverse range of membrane proteins through a bilayer-mediated mechanism.  相似文献   

4.
In order to examine whether calcium-dependent binding of annexin to acidic phospholipids could change the lipid bilayer environment sufficiently to perturb channel-mediated transmembrane ion-transport, gramicidin A channel activity in planar lipid bilayers was investigated in the presence of calcium and annexins II, III or V. The experiments were performed with membranes consisting of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine in 300 mM KCl solution buffered to pH 7.4 and with either 0.1 or 1 mM calcium added to the solution. Annexin (1 microM) was subsequently applied to the cis side of the membrane. All three annexins (II, III and V) when tested at 1 mM calcium decreased the gramicidin single-channel conductance. Annexins II and III increased the mean lifetime of the channels whereas annexin V seemed to have no influence on the mean lifetime. Since the lifetime of gramicidin A channels is a function of the rate constant for dissociation of the gramicidin dimer, which is dependent on the physical properties of the lipid phase, binding of annexins II and III seems to stabilize the gramicidin channel owing to a change of the bilayer structure.  相似文献   

5.
To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.  相似文献   

6.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

7.
Gramicidin A is a linear polypeptide antibiotic that facilitates the diffusion of monovalent cations across lipid bilayer membranes by forming channels. It has been proposed that the conducting channel is a dimer which is in equilibrium with nonconducting monomers in the membrane. To directly test this model in several independent ways, we have prepared and purified a series of gramicidin C derivatives. All of these derivatives are fully active analogs of gramicidin A, and each derivative has a useful chromophore esterified to the phenolic hydroxyl of tyrosine #11. Simultaneous conductance and fluorescence measurements on planar lipid bi-layer membranes containing dansyl gramicidin C yielded four conclusions: (1) A plot of the logarithm of the membrane conductance versus the logarithm of the membrane fluorescence had a slope of 2.0 ± 0.3, over a concentration range for which nearly all the gramicidin was monomeric. Hence, the active channel is a dimer of the nonconducting species. (2) In a membrane in which nearly all of the gramicidin was dimeric, the number of channels was approximately equal to the number of dimers. Thus, most dimers are active channels and so it should be feasible to carry out spectroscopic studies of the conformation of the transmembrane channel. (3) The association constant for dimerization is more than 1,000-fold larger in a glycerolester membrane with 26 Å-hydrocarbon thickness than in a 47 Å-glycerolester membrane. The dimerization constant in a 48 Å-phosphatidyl choline membrane was 200 times larger than in a 47 Å-glycerolester membrane, showing that it depends on the type of lipid as well as on the thickness of the hydrocarbon core. (4) We were readily able to detect 10?14 mole cm?2 of dansyl gramicidin C in a bilayer membrane, which corresponds to 60 fluorescent molecules per square μm. The fluorescent techniques described here should be sufficiently sensitive for fluorescence studies of reconstituted gates and receptors in planar bilayer membranes. An alternative method of determining the number of molecules of gramicidin in the channel is to measure the fraction of hybrid channels present in a mixture of 2 chemically different gramicidins. The single-channel conductance of p-phenylazo-benzene-sulfonyl ester gramicidin C (PABS gramicidin C) was found to be 0.68 that of gramicidin A. In membranes containing a mixture of these 2 gramicidins, a hybrid channel was evident in addition to 2 pure channels. The hybrid channel conductance was 0.82 that of gramicidin A. Fluorescence energy transfer from dansyl gramicidin C to diethylamino-phenylazobenzene-sulfonyl ester gramicidin C (DPBS gramicidin C), provided an independent way to measure the fraction of hybrid channels on liposomes. For both techniques the fraction of hybrid channels was found to be 2ad where a2 and d2 were the fractions of the 2 kinds of pure channels. This result strongly supports a dimer channel and the hybrid data excludes the possibility of a tetramer channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes. The various models which have been proposed for the conformation of the gramicidin transmembrane channel are briefly discussed.  相似文献   

8.
Weakly conductive, atypical channels were observed to form from highly purified Val1-gramicidin A in planar lipid bilayer membranes. The structure of these low-conductance channels (minis) was investigated by a detailed study of their channel forming characteristics. The possibility that minis originate from primary structural analogs or degradation products of gramicidin was considered and ruled out. In particular, spontaneous conductance changes in single channels demonstrated that minis can derive directly and reversibly from "standard" channels having the most common conductance level. The fraction of channels which are minis does not vary with changes in membrane gramicidin concentration, indicating that mini and standard channels have the same molecularity, that is, both are dimers. The mean lifetime of mini channels is only slightly shorter than that of standard channels, indicating that the six hydrogen bonds that stabilize the head-to-head dimer are minimally affected in minis. The fraction of channels which are minis is unaffected by the ionic strength, ionic composition, or pH of the bathing solution; it is also unaffected by the lipid composition of the bilayer. These findings are consistent with the hypothesis that minis arise from minor changes in the conformation of the Val1-gramicidin A molecule near the channel entrance or exit.  相似文献   

9.
Hwang TC  Koeppe RE  Andersen OS 《Biochemistry》2003,42(46):13646-13658
Genistein, a generic tyrosine kinase inhibitor, has been used extensively as a tool to investigate the possible regulation of membrane function by tyrosine phosphorylation. Genistein, in micromolar concentrations, alters the function of numerous ion channels and other membrane proteins, but only in few cases has it been demonstrated that the changes in membrane protein (ion channel) function are due to changes in a protein's phosphorylation status. The major common denominator characterizing proteins that are modulated by genistein seems to be that they are imbedded into, and span, the bilayer component of the plasma membrane. We therefore explored whether genistein could alter ion channel function by a bilayer-mediated mechanism and examined genistein's effect on gramicidin A (gA) channels in planar phospholipid bilayers. gA channels form by transmembrane dimerization of two nonconducting subunits, and genistein potentiates gA channel activity by increasing the appearance rate and prolonging the lifetime of bilayer-spanning gA dimers. That is, genistein shifts the equilibrium between nonconducting monomers and conducting dimers in favor of the bilayer-spanning dimers; the changes in channel activity therefore cannot be due to changes in bilayer fluidity. To obtain further insights into the mechanism underlying this modulation of gA channel function, we examined the effects of genistein on channels formed by gA analogues that differ in amino acid sequence. For a given channel length, the effects of genistein on gA dimerization do not depend on the specific sequence, or the chirality, of the channel-forming gA analogues. In contrast, when we change the channel length (by decreasing or increasing the number of amino acid residues in the sequence), or the bilayer thickness (by changing methylene groups in the acyl chains), the magnitude of genistein's effect increases with increasing hydrophobic mismatch between the channel length and the bilayer thickness. These results strongly suggest that genistein alters bilayer mechanical properties, which in turn modulates channel function. This bilayer-mediated mechanism is likely to apply to other pharmacological reagents and membrane proteins.  相似文献   

10.
Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis   总被引:3,自引:0,他引:3  
A new gramicidin has been isolated from a commercial mixture of gramicidins A, B, and C. This new molecule, designated gramicidin K, contains formyl and ethanolamine blocking groups, has a molecular weight approximately 20% higher than gramicidin A, and is strongly retained on reversed-phase liquid chromatographic columns. Gramicidin K can be resolved into two components, one of which contains tyrosine. In lipid bilayer membranes, both components form channels of considerably longer lifetime and somewhat lower conductance than gramicidin A. Gramicidin K appears to be a lipopeptide that consists of a fatty acyl chain attached to the ethanolamine of gramicidin A.  相似文献   

11.
Gramicidin A, a linear peptide antibiotic, makes membranes permeable to alkali cations and hydrogen ions by forming transmembrane channels. We report here conductance and fluorescence energy transfer studies of channels containing two kinds of gramicidin. These studies of hybrid channels were designed to determine the number of molecules in a channel. The gramicidins studied were gramicidin A, dansyl gramicidin C, the p-phenylazobenzene sulfonyl derivative of gramicidin C (PABS4 gramicidin C), and the 4-(diethylamino)-phenylazobenzene-4-sulfonyl chloride derivative of gramicidin C (DPBS gramicidin C). The dansyl, PABS and DPBS groups were linked to the hydroxyl group of tyrosine 11 in gramicidin C. The single-channel conductance of PABS gramicidin C in planar bilayer membranes is 0.68 that of gramicidin A. Membranes containing both PABS gramicidin C and gramicidin A exhibit three kinds of channels: a pure gramicidin A, a pure PABS gramicidin C channel, and a hybrid channel with an intermediate conductance (0.82 that of gramicidin A). The dependence of the frequencies of these three kinds of channels on the mole fractions of gramicidin A and PABS gramicidin C in the membrane-forming solution fits a dimer model. Fluorescence energy transfer was used as a complementary means of ascertaining the frequency of hybrid channels. Dansyl gramicidin C was the fluorescent energy donor and DPBS gramicidin C was the energy acceptor. The efficiency of energy transfer between these chromophores in hybrid channels in liposomes was 75%. The relative quantum yield of the dansyl fluorescence was measured as a function of the mole fraction of DPBS gramicidin C. These fluorescence studies, like the single-channel conductance measurements, showed that there are two molecules of gramicidin in a channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes.  相似文献   

12.
Hydrophobic interactions between a bilayer and its embedded membrane proteins couple protein conformational changes to changes in the packing of the surrounding lipids. The energetic cost of a protein conformational change therefore includes a contribution from the associated bilayer deformation energy (DeltaGdef0), which provides a mechanism for how membrane protein function depends on the bilayer material properties. Theoretical studies based on an elastic liquid-crystal model of the bilayer deformation show that DeltaGdef0 should be quantifiable by a phenomenological linear spring model, in which the bilayer mechanical characteristics are lumped into a single spring constant. The spring constant scales with the protein radius, meaning that one can use suitable reporter proteins for in situ measurements of the spring constant and thereby evaluate quantitatively the DeltaGdef0 associated with protein conformational changes. Gramicidin channels can be used as such reporter proteins because the channels form by the transmembrane assembly of two nonconducting monomers. The monomerleft arrow over right arrow dimer reaction thus constitutes a well characterized conformational transition, and it should be possible to determine the phenomenological spring constant describing the channel-induced bilayer deformation by examining how DeltaGdef0 varies as a function of a mismatch between the hydrophobic channel length and the unperturbed bilayer thickness. We show this is possible by analyzing experimental studies on the relation between bilayer thickness and gramicidin channel duration. The spring constant in nominally hydrocarbon-free bilayers agrees well with estimates based on a continuum analysis of inclusion-induced bilayer deformations using independently measured material constants.  相似文献   

13.
The mean lifetime of gramicidin A channels in bilayers formed from monoolein and squalane was sharply reduced by the absorption of a range of n-alkanols and cholesterol. Results are shown for n-hexanol, n-octanol, n-decanol, n-dodecanol, n-tetradecanol, n-hexadecanol, n-octadecanol and cholesterol. The longer chain n-alkanols were apparently more effective than the shorter members and cholesterol was the most effective of the substances examined. The single channel conductance was also affected, though to a much lesser extent than the mean channel lifetime, the n-alkanols producing increases and cholesterol a decrease. It is suggested that membrane fluidity changes are not likely to be primarily responsible for the reductions in channel lifetimes but that the bilayer tension, which is known to be increased by n-octanol, could be significant.  相似文献   

14.
Membrane protein function is regulated by the cell membrane lipid composition. This regulation is due to a combination of specific lipid-protein interactions and more general lipid bilayer-protein interactions. These interactions are particularly important in pharmacological research, as many current pharmaceuticals on the market can alter the lipid bilayer material properties, which can lead to altered membrane protein function. The formation of gramicidin channels are dependent on conformational changes in gramicidin subunits which are in turn dependent on the properties of the lipid. Hence the gramicidin channel current is a reporter of altered properties of the bilayer due to certain compounds. Open in a separate windowClick here to view.(63M, flv)  相似文献   

15.
Ultraviolet flash photolysis of gramicidin-doped lipid bilayers   总被引:1,自引:0,他引:1  
We have examined the rate of gramicidin channel conductance inactivation by ultraviolet photolysis using 0.1 millisecond light flashes. The lower limit on the channel photolysis reaction rate has been reduced by four orders of magnitude over previous observations. Monoolein/hexadecane bilayers formed in 1.0 M KCl were doped with (1-3) x 10(6) gramicidin A' channels and exposed to a broad-spectrum light flash. The flash reduced membrane conductance abruptly by approx. 16%. Following the flash, a further slow reduction of approx. 3% was observed followed by a slow recovery of approx. 4%. The post-flash decay and recovery may be due to slow chemical reactions, conformational relaxations, or changes in the equilibrium between aqueous, lipid-bound, and channel-forming dimerized gramicidin. Under our experimental conditions, gramicidin M was insensitive to light flashes compared to gramicidin A', demonstrating that for gramicidin A' the photolysis mechanism depends specifically on the tryptophan side-chain. Flash photolysis of a membrane containing a small population of channels (approx. 30) indicated that the decay is due to the sudden inactivation of several channels. The recovery appears to result from insertion of normal channels into the membrane. Flash photolysis of single-channel membranes showed that the flash causes abrupt, complete channel inactivation.  相似文献   

16.
Ondrias et al. ((1986) Stud. Biophys. 115, 17-22) found that dibucaine, butacaine, and tetracaine reduce the conductance of membranes containing multiple (greater than 10(6)) gramicidin channels. Similar experiments with local anesthetics (LA's) added to the bath while gently stirring showed that the inhibition developed slowly over a time course of 5-10 min. We developed a many (10-20) channel membrane technique which demonstrated that when LA's were added to the bath and the membrane was repeatedly broken and reformed, the channel occurrence frequency declined promptly. In standard single-channel membrane experiments at lower gramicidin densities, the mean single channel conductance and lifetime distributions with LA's present in the bath did not differ from the controls. The predominant channel conductance amplitude was lower by 9.1% than those of controls, but channel amplitude distributions were also modified so that the net reduction in overall population channel conductance was only about 2.0%. Channel currents showed no evidence of flicker blocks. The lifetime histograms of control and LA-exposed channel populations were both satisfactorily fit by a single-exponential function with the same mean. Thus, inhibition is due primarily to a reduction in the frequency of occurrence of conducting channels, implying a reduced concentration of active monomers in the membrane.  相似文献   

17.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin.The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1–2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

18.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin. The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1-2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

19.
The interaction of biotin-binding proteins with biotinylated gramicidin (gA5XB) was studied by monitoring single-channel activity and sensitized photoinactivation kinetics. It was discovered that the addition of streptavidin or avidin to the bathing solutions of a bilayer lipid membrane (BLM) with incorporated gA5XB induced the opening of a channel characterized by approximately doubled single-channel conductance and extremely long open-state duration. We believe that the deceleration of the photoinactivation kinetics observed here with streptavidin and previously (Rokitskaya, T.I., Y.N. Antonenko, E.A. Kotova, A. Anastasiadis, and F. Separovic. 2000. Biochemistry. 39:13053-13058) with avidin reflects the formation of long-lived channels of this type. Both opening and closing of the double-conductance channels occurred via a transient sub-state of the conductance coinciding with that of the usual single-channel transition. The appearance of the double-conductance channels after the addition of streptavidin was preceded by bursts of fast fluctuations of the current with the open state duration of the individual events of 60 ms. The streptavidin-induced double-conductance channels appeared to be inherent only to the gramicidin analogue with a biotin group linked to the COOH terminus through a long linker arm. Including biotinylated phosphatidylethanolamine into the BLM prevented the formation of the double-conductance channels even with the excess streptavidin. In view of the results obtained here, it is suggested that the double-conductance channel represents a tandem of two neighboring gA5XB channels with their COOH termini being cross-linked by the bound streptavidin at both sides of the BLM. The finding that streptavidin induces the formation of the tandem gramicidin channel comprising two channels functioning in concert is considered to be relevant to the physiologically important phenomenon of ligand-induced receptor oligomerization.  相似文献   

20.
Compared to the N-formyl gramicidin A (GA), the N-acetyl gramicidin A (NAG) channel has unchanged conductance in 1 M NH4+ (gamma NN/gamma GG = 1, conductance ratio) but reduced conductance in 1 M K+ (gamma NN/gamma GG = 0.6) methylammonium (gamma NN/gamma GG = 0.3), and formamidinium (gamma NN/gamma GG = 0.1) solutions. Except with formamidinium, "flicker blocks" are evident even at low cutoff frequencies. For all cations studied, channel lifetimes of N-acetyl homodimers (NN) are approximately 50-fold shorter than those of the GA homodimer (GG). The novel properties of GA channels in formamidinium solution (supralinear current-voltage relations and dimer stabilization (Seoh and Busath, 1993)) also appear in NN channels. The average single channel lifetime in 1 M formamidinium solution at 100 mV is 6-7-fold longer than in K+ and methylammonium solutions and, like in the GA channel, significantly decreases with increasing membrane potential. Experiments with mixtures of the two peptides, GA and NAG, showed three main conductance peaks. Oriented hybrids were formed utilizing the principle that monomers remain in one leaflet of the bilayer (O'Connell et al., 1990). With GA at the polarized side and NAG at the grounded side, at positive potentials (in which case hybrids were designated GN) and at negative potentials (in which case hybrids were designated NG), channels had the same conductances and channel properties at all potentials studied. Flicker blocks were not evident in the hybrid channels, which suggests that both N-acetyl methyl groups at the junction of the dimer are required to cause flickers. Channel lifetimes in hybrids are only approximately threefold shorter than those of the GG channels, and channel conductances are similar to those of GG rather than NN channels. We suggest that acetyl-acetyl crowding at the dimeric junction in NN channels cause dimer destabilization, flickers, and increased selectivity in N-acetyl gramicidin channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号