首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Arabidopsis plants possess a family of nine AtAtg8 gene homologues of the yeast autophagy-associated Apg8/Aut7 gene. To gain insight into how these genes function in plants, first, the expression patterns of five AtAtg8 homologues were analysed in young Arabidopsis plants grown under favourable growth conditions or following exposure to prolonged darkness or sugar starvation. Promoters, plus the entire coding regions (exons and introns) of the AtAtg8 genes, were fused to the beta-glucuronidase reporter gene and transformed into Arabidopsis plants. In all plants, grown under favourable growth conditions, beta-glucuronidase staining was much more significant in roots than in shoots. Different genes showed distinct spatial and temporal expression patterns in roots. In some transgenic plants, beta-glucuronidase staining in leaves was induced by prolonged darkness or sugar starvation. Next, Arabidopsis plants were transformed with chimeric gene-encoding Atg8f protein fused to N-terminal green fluorescent protein and C-terminal haemagglutinin epitope tags. Analysis of these plants showed that, under favourable growth conditions, the Atg8f protein is efficiently processed and is localized to autophagosome-resembling structures, both in the cytosol and in the central vacuole, in a similar manner to its processing and localization under starvation stresses. Moreover, treatment with a cocktail of proteasome inhibitors did not prevent the turnover of this protein, implying that its turnover takes place in the vacuoles, as occurs in yeasts. The results suggest that, in plants, the cellular processes involving the Atg8 genes function efficiently in young, non-senescing tissues, both under favourable growth conditions and under starvation stresses.  相似文献   

3.
Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule "X" and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.  相似文献   

4.
We have cloned four human cDNAs encoding putative cysteine proteinases that have been tentatively called autophagins. These proteins are similar to Apg4/Aut2, a yeast enzyme involved in the activation of Apg8/Aut7 during the process of autophagy. The identified proteins ranging in length from 393 to 474 amino acids also contain several structural features characteristic of cysteine proteinases including a conserved cysteine residue that is essential for the catalytic properties of these enzymes. Northern blot analysis demonstrated that autophagins are broadly distributed in human tissues, being especially abundant in skeletal muscle. Functional and morphological analysis in autophagy-defective yeast strains lacking Apg4/Aut2 revealed that human autophagins-1 and -3 were able to complement the deficiency in the yeast protease, restoring the phenotypic and biochemical characteristics of autophagic cells. Enzymatic studies performed with autophagin-3, the most widely expressed human autophagin, revealed that the recombinant protein hydrolyzed the synthetic substrate Mca-Thr-Phe-Gly-Met-Dpa-NH(2) whose sequence derives from that present around the Apg4 cleavage site in yeast Apg8/Aut7. This proteolytic activity was diminished by N-ethylmaleimide, an inhibitor of cysteine proteases including yeast Apg4/Aut2. These results provide additional evidence that the autophagic process widely studied in yeast can also be fully reconstituted in human tissues and open the possibility to explore the relevance of the autophagin-based proteolytic system in the induction, regulation, and execution of autophagy.  相似文献   

5.
In yeast, Atg4/Apg4 is a unique cysteine protease responsible for the cleavage of the carboxyl terminus of Atg8/Apg8/Aut7, a reaction essential for its lipidation during the formation of autophagosomes. However, it is still unclear whether four human Atg4 homologues cleave the carboxyl termini of the three human Atg8 homologues, microtubule-associated protein light chain 3 (LC3), GABARAP, and GATE-16. Using a cell-free system, we found that HsAtg4B, one of the human Atg4 homologues, cleaves the carboxyl termini of these three Atg8 homologues. In contrast, the mutant HsAtg4B(C74A), in which a predicted active site Cys(74) was changed to Ala, lacked proteolytic activity, indicating that Cys(74) is essential for the cleavage activity of cysteine protease. Using phospholipase D, we showed that the modified forms of endogenous LC3 and GABARAP are lipidated and therefore were designated LC3-PL and GABARAP-PL. When purified glutathione S-transferase-tagged HsAtg4B was incubated in vitro with a membrane fraction enriched with endogenous LC3-PL and GABARAP-PL, the mobility of LC3-PL and GABARAP-PL was changed to those of the unmodified proteins. These mobility shifts were not seen when Cys(74) of HsAtg4B was changed to Ala. Overexpression of wild-type HsAtg4B decreased the amount of LC3-PL and GABARAP-PL and increased the amount of unmodified endogenous LC3 and GABARAP in HeLa cells. Expression of CFP-tagged HsAtg4B (CFP-HsAtg4B) and YFP-tagged LC3 in HeLa cells under starvation conditions resulted in a significant decrease in the punctate pattern of distribution of YFP-tagged LC3 and an increase in its cytoplasmic distribution. RNA interference of HsAtg4B increased the amount of LC3-PL in HEK293 cells. Taken together, these results suggest that HsAtg4B negatively regulates the localization of LC3 to a membrane compartment by delipidation.  相似文献   

6.
Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre-autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine-conjugated Aut7p and an Apg12p- Apg5p conjugate is essential for the localization of Aut7p to the pre-autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy- specific phosphatidylinositol 3-kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation.  相似文献   

7.
Autophagy is a degradative pathway by which cells sequester nonessential, bulk cytosol into double-membrane vesicles (autophagosomes) and deliver them to the vacuole for recycling. Using this strategy, eukaryotic cells survive periods of nutritional starvation. Under nutrient-rich conditions, autophagy machinery is required for the delivery of a resident vacuolar hydrolase, aminopeptidase I, by the cytoplasm to vacuole targeting (Cvt) pathway. In both pathways, the vesicle formation process requires the function of the starvation-induced Aut7 protein, which is recruited from the cytosol to the forming Cvt vesicles and autophagosomes. The membrane binding of Aut7p represents an early step in vesicle formation. In this study, we identify several requirements for Aut7p membrane association. After synthesis in the cytosol, Aut7p is proteolytically cleaved in an Aut2p-dependent manner. While this novel processing event is essential for Aut7p membrane binding, Aut7p must undergo additional physical interactions with Aut1p and the autophagy (Apg) conjugation complex before recruitment to the membrane. Lack of these interactions results in a cytosolic distribution of Aut7p rather than localization to forming Cvt vesicles and autophagosomes. This study assigns a functional role for the Apg conjugation system as a mediator of Aut7p membrane recruitment. Further, we demonstrate that Aut1p, which physically interacts with components of the Apg conjugation complex and Aut7p, constitutes an additional factor required for Aut7p membrane recruitment. These findings define a series of steps that results in the modification of Aut7p and its subsequent binding to the sequestering transport vesicles of the autophagy and cytoplasm to vacuole targeting pathways.  相似文献   

8.
In the yeast, Saccharomyces cerevisiae, two ubiquitin-like modifications, Apg12 conjugation with Apg5 and Apg8 lipidation with phosphatidylethanolamine, are essential for autophagy and the cytoplasm-to-vacuole transport of aminopeptidase I (Cvt pathway). As a unique E1-like enzyme, Apg7 activates two modifiers (Apg12 and Apg8) in an ATP-dependent manner and, for this activity, the carboxyl terminal 40 amino acids are essential. For a better understanding of the function of the carboxyl terminus of Apg7, we performed a sequential deletion of the region. A mutant expressing Apg7DeltaC17 protein, which lacks the carboxyl 17 amino acids of Apg7, showed defects in both the Cvt pathway and autophagy. Apg8 lipidation is inhibited in the mutant, while Apg12 conjugation occurs normally. A mutant expressing Apg7DeltaC13 protein showed a defect in the Cvt pathway, but not autophagy, suggesting that the activity of Apg7 for Apg8 lipidation is more essential for the Cvt pathway than for autophagy. Mutant Apg7DeltaC17 protein is still able to interact with Apg8, Apg12 and Apg3, and forms a homodimer, indicating that the deletion of the carboxyl terminal 17 amino acids has little effect on these interactions and Apg7 dimerization. These results suggest that the carboxyl terminal 17 amino acids of Apg7 play a specific role in Apg8 lipidation indispensable for the Cvt pathway and autophagy.  相似文献   

9.
In macroautophagy, cytoplasmic components are delivered to lysosomes for degradation via autophagosomes that are formed by closure of cup-shaped isolation membranes. However, how the isolation membranes are formed is poorly understood. We recently found in yeast that a novel ubiquitin-like system, the Apg12-Apg5 conjugation system, is essential for autophagy. Here we show that mouse Apg12-Apg5 conjugate localizes to the isolation membranes in mouse embryonic stem cells. Using green fluorescent protein-tagged Apg5, we revealed that the cup-shaped isolation membrane is developed from a small crescent-shaped compartment. Apg5 localizes on the isolation membrane throughout its elongation process. To examine the role of Apg5, we generated Apg5-deficient embryonic stem cells, which showed defects in autophagosome formation. The covalent modification of Apg5 with Apg12 is not required for its membrane targeting, but is essential for involvement of Apg5 in elongation of the isolation membranes. We also show that Apg12-Apg5 is required for targeting of a mammalian Aut7/Apg8 homologue, LC3, to the isolation membranes. These results suggest that the Apg12-Apg5 conjugate plays essential roles in isolation membrane development.  相似文献   

10.
Under starvation conditions, the majority of intracellular degradation occurs at the lysosome or vacuole by the autophagy pathway. The cytoplasmic substrates destined for degradation are packaged inside unique double-membrane transport vesicles called autophagosomes and are targeted to the lysosome/vacuole for subsequent breakdown and recycling. Genetic analyses of yeast autophagy mutants, apg and aut, have begun to identify the molecular machinery as well as indicate a substantial overlap with the biosynthetic cytoplasm to vacuole targeting (Cvt) pathway. Transport vesicle formation is a key regulatory step of both pathways. In this study, we characterize the putative compartment from which both autophagosomes and the analogous Cvt vesicles may originate. Microscopy analyses identified a perivacuolar membrane as the resident compartment for both the Apg1-Cvt9 signaling complex, which mediates the switching between autophagic and Cvt transport, and the autophagy/Cvt-specific phosphatidylinositol 3-kinase complex. Furthermore, the perivacuolar compartment designates the initial site of membrane binding by the Apg/Cvt vesicle component Aut7, the Cvt cargo receptor Cvt19, and the Apg conjugation machinery, which functions in the de novo formation of vesicles. Biochemical isolation of the vesicle component Aut7 and density gradient analyses recapitulate the microscopy findings although also supporting the paradigm that components required for vesicle formation and packaging concentrate at subdomains within the donor membrane compartment.  相似文献   

11.
Microtubule-associated protein (MAP) light chain 3 (LC3) is a human homologue of yeast Apg8/Aut7/Cvt5 (Atg8), which is essential for autophagy. MAP-LC3 is cleaved by a cysteine protease to produce LC3-I, which is located in cytosolic fraction. LC3-I, in turn, is converted to LC3-II through the actions of E1- and E2-like enzymes. LC3-II is covalently attached to phosphatidylethanolamine on its C terminus, and it binds tightly to autophagosome membranes. We determined the solution structure of LC3-I and found that it is divided into N- and C-terminal subdomains. Additional analysis using a photochemically induced dynamic nuclear polarization technique also showed that the N-terminal subdomain of LC3-I makes contact with the surface of the C-terminal subdomain and that LC3-I adopts a single compact conformation in solution. Moreover, the addition of dodecylphosphocholine into the LC3-I solution induced chemical shift perturbations primarily in the C-terminal subdomain, which implies that the two subdomains have different sensitivities to dodecylphosphocholine micelles. On the other hand, deletion of the N-terminal subdomain abolished binding of tubulin and microtubules. Thus, we showed that two subdomains of the LC3-I structure have distinct functions, suggesting that MAP-LC3 can act as an adaptor protein between microtubules and autophagosomes.  相似文献   

12.
BACKGROUND INFORMATION: Autophagy is a catabolic process for degradation of cytoplasmic components in the vacuolar apparatus. A genome-wide survey recently showed evolutionary conservation among autophagy genes in yeast, mammals and plants. To elucidate the molecular and subcellular machinery responsible for the sequestration and subsequent digestion of intracellular material in plants, we utilized a combination of morphological and molecular methods (confocal laser-scanning microscopy, transmission electron microscopy and real-time PCR respectively). RESULTS: Autophagy in Arabidopsis thaliana suspension-cultured cells was induced by carbon starvation, which triggered an immediate arrest of cell growth together with a rapid degradation of cellular proteins. We followed the onset of these responses and, in this report, provide a clear functional classification for the highly polymorphic autophagosomes by which the cell sequesters and degrades a portion of its own cytoplasm. Quantification of autophagy-related structures shows that cells respond to the stress signal by a rapid and massive, but transient burst of autophagic activity, which adapts to the stress signal. We also monitored the real-time expressions of AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes, which are orthologues of yeast genes involved in the Atg8 ubiquitination-like conjugation pathway and are linked to autophagosome formation. We show that these autophagy-related genes are transiently up-regulated in a co-ordinated manner at the onset of starvation. CONCLUSIONS: Sucrose starvation induces autophagy and up-regulates orthologues of the yeast Atg8 conjugation pathway genes in Arabidopsis cultured cells. The AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes are expressed in successive waves that parallel the biochemical and cytological remodelling that takes place. These genes thus serve as early markers for autophagy in plants.  相似文献   

13.
Fricke J  Voss C  Thumm M  Meyers G 《Journal of virology》2004,78(11):5900-5912
The genome of the cytopathogenic (cp) bovine viral diarrhea virus (BVDV) JaCP contains a cellular insertion coding for light chain 3 (LC3) of microtubule-associated proteins, the mammalian homologue of yeast Aut7p/Apg8p. The cellular insertion induces cp BVDV-specific processing of the viral polyprotein by a cellular cysteine protease homologous to the known yeast protease Aut2p/Apg4p. Three candidate bovine protease genes were identified on the basis of the sequence similarity of their products with the Saccharomyces cerevisiae enzyme. The search for a system for functional testing of these putative LC3-specific proteases revealed that the components involved in this processing have been highly conserved during evolution, so that the substrate derived from a mammalian virus is processed in cells of mammalian, avian, fish, and insect origin, as well as in rabbit reticulocyte lysate, but not in wheat germ extracts. Moreover, two of these proteases and a homologous protein from chickens were able to rescue the defect of a yeast AUT2 deletion mutant. In coexpression experiments with yeast and wheat germ extracts one of the bovine proteases and the corresponding enzyme from chickens were able to process the viral polyprotein containing LC3. Northern blots showed that bovine viral diarrhea virus infection of cells has no significant influence on the expression of either LC3 or its protease, bAut2B2. However, LC3-specific processing of the viral polyprotein containing the cellular insertion is essential for replication of the virus since mutants with changes in the LC3 insertion significantly affecting processing at the LC3/NS3 site were not viable.  相似文献   

14.
Apg7p/Cvt2p, a protein-activating enzyme, is essential for both the Apg12p-Apg5p conjugation system and the Apg8p membrane targeting in autophagy and cytoplasm-to-vacuole targeting in the yeast Saccharomyces cerevisiae. Similar to the ubiquitin-conjugating system, both Apg12p and Apg8p are activated by Apg7p, an E1-like enzyme. Apg12p is then transferred to Apg10p, an E2-like enzyme, and conjugated with Apg5p, whereas Apg8p is transferred to Apg3p, another E2-like enzyme, followed by conjugation with phosphatidylethanolamine. Evidence is presented here that Apg7p forms a homodimer with two active-site cysteine residues via the C-terminal region. The dimerization of Apg7p is independent of the other Apg proteins and facilitated by overexpressed Apg12p. The C-terminal 123 amino acids of Apg7p (residues 508 to 630 out of 630 amino acids) are sufficient for its dimerization, where there is neither an ATP binding domain nor an active-site cysteine essential for its E1 activity. The deletion of its carboxyl 40 amino acids (residues 591-630 out of 630 amino acids) results in several defects of not only Apg7p dimerization but also interactions with two substrates, Apg12p and Apg8p and Apg12p-Apg5p conjugation, whereas the mutant Apg7p contains both an ATP binding domain and an active-site cysteine. Furthermore, the carboxyl 40 amino acids of Apg7p are also essential for the interaction of Apg7p with Apg3p to form the E1-E2 complex for Apg8p. These results suggest that Apg7p forms a homodimer via the C-terminal region and that the C-terminal region is essential for both the activity of the E1 enzyme for Apg12p and Apg8p as well as the formation of an E1-E2 complex for Apg8p.  相似文献   

15.
Macroautophagy mediates the bulk degradation of cytoplasmic components. It accounts for the degradation of most long-lived proteins: cytoplasmic constituents, including organelles, are sequestered into autophagosomes, which subsequently fuse with lysosomes, where degradation occurs. Although the possible involvement of autophagy in homeostasis, development, cell death, and pathogenesis has been repeatedly pointed out, systematic in vivo analysis has not been performed in mammals, mainly because of a limitation of monitoring methods. To understand where and when autophagy occurs in vivo, we have generated transgenic mice systemically expressing GFP fused to LC3, which is a mammalian homologue of yeast Atg8 (Aut7/Apg8) and serves as a marker protein for autophagosomes. Fluorescence microscopic analyses revealed that autophagy is differently induced by nutrient starvation in most tissues. In some tissues, autophagy even occurs actively without starvation treatments. Our results suggest that the regulation of autophagy is organ dependent and the role of autophagy is not restricted to the starvation response. This transgenic mouse model is a useful tool to study mammalian autophagy.  相似文献   

16.
Yeast (Saccharomyces cerevisiae) Atg6/Vps30 is required for autophagy and the sorting of vacuolar hydrolases, such as carboxypeptidase Y. In higher eukaryotes, however, roles for ATG6/VPS30 homologs in vesicle sorting have remained obscure. Here, we show that AtATG6, an Arabidopsis (Arabidopsis thaliana) homolog of yeast ATG6/VPS30, restored both autophagy and vacuolar sorting of carboxypeptidase Y in a yeast atg6/vps30 mutant. In Arabidopsis cells, green fluorescent protein-AtAtg6 protein localized to punctate structures and colocalized with AtAtg8, a marker protein of the preautophagosomal structure. Disruption of AtATG6 by T-DNA insertion resulted in male sterility that was confirmed by reciprocal crossing experiments. Microscopic analyses of AtATG6 heterozygous plants (AtATG6/atatg6) crossed with the quartet mutant revealed that AtATG6-deficient pollen developed normally, but did not germinate. Because other atatg mutants are fertile, AtAtg6 likely mediates pollen germination in a manner independent of autophagy. We propose that Arabidopsis Atg6/Vps30 functions not only in autophagy, but also plays a pivotal role in pollen germination.  相似文献   

17.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   

18.
The exocyst complex is a multi-subunits evolutionary conserved complex, which was originally shown to be primarily associated with vesicular transport to the plasma membrane. A recent report (Kulich et al., 2013 Traffic; In Press) revealed that AtEXO70B1, one of the multiple subunits of the exocyst complex of Arabidopsis thaliana plants, is co-transported with the autophagy-associated Atg8f protein to the vacuole. This pathway does not involve the Golgi apparatus. The co-localization of AtEXO70B1 and Atg8f suggests either that both of these proteins are co-transported together to the vacuole or, alternatively, that Atg8 binds to a putative Atg8 interacting motif (AIM) located within the AtEXO70B1 polypeptide, apparently forming a tethering complex for an autophagic complex that is transported to the vacuole. In the present addendum, by tooling a bioinformatics approach, we show that AtEXO70B1 as well as the additional 20 paralogs of Arabidopsis EXO70 exocyst subunits each possess one or more AIMs whose consensus sequence implies their high fidelity binding to Atg8. This indicates that the autophagy machinery is strongly involved in the assembly, transport, and apparently also the function of AtEXO70B1 as well as the exocyst sub complex.  相似文献   

19.
A P-element line ( P0997) of Drosophila melanogaster in which the P element disrupts the Drosophila homolog of the Saccharomyces cerevisiae gene APG4/AUT2 was identified during the course of screening for cut ( ct) modifiers. The yeast gene APG4/AUT2 encodes a cysteine endoprotease directed against Apg8/Aut7 and is necessary for autophagy. The P0997 mutation enhances the wing margin loss associated with ct mutations, and also modifies the wing and eye phenotypes of Notch (N), Serrate (Ser), Delta (Dl), Hairless (H), deltex (dx), vestigial (vg) and strawberry notch (sno) mutants. These results therefore suggest an unexpected link between autophagy and the Notch signaling pathway.  相似文献   

20.
GATE-16, GABARAP, and LC3 are three mammalian counterparts of yeast Apg8p/Aut7p. Here, we show that GATE-16 and GABARAP are authentic modifiers, as is the case of LC3 modification. The C-terminal Phe(117) of proGATE-16 and the C-terminal Leu(117) of proGABARAP are post-translationally cleaved to expose an essential Gly(116) within GATE-16 and GABARAP, with the products designated GATE-16-I and GABARAP-I, respectively. The Gly(116) within GATE-16 and GABARAP are essential for further formation of the intermediates between them and Apg7p(C572S) and Apg3p(C264S). When Apg7p and Apg3p are expressed, GATE-16-I and GABARAP-I are modified to a secondary ubiquitin-like modified form, GATE-16-II and GABARAP-II, respectively. GATE-16-I and GABARAP-I, but not LC3-I, localize to membrane compartments before their modification. These results indicate that GATE-16 and GABARAP are authentic modifiers, but that they have different biochemical characteristics from those of LC3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号