首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Transport of Mn2+ was repressed in Candida utilis cells grown in continuous culture in high-Mn2+ (100 μM Mn2+) medium as compared to cells grown in basic (0.45 μM Mn2+) and low-Mn2+ (< 0.05 μM Mn2+) media. In contrast, no repression of Cu2+ uptake occurred in high-Cu2+-grown (25 μM Cu2+) cells as compared to cells grown in basic medium (0.54 μM Cu2+). Cu2+-limited cells did not hyperaccumulate Cu2+ and there was not significant difference in initial uptake rates for all 3 Cu2+ conditions. Mn2+ uptake appears to be regulated by a mechanism sensitive to the external Mn2+ concentration, whereas Cu2+ transport is not governed in this way by the external Cu2+.  相似文献   

2.
Abstract The carboxylesterases from Proteus vulgaris, Salmonella enterica and Citrobacter amalonaticus were purified 104-, 95- and 120-fold, respectively by chromatography. The enzymes had similar catalytic activities but differed considerably in their inactivation by heat, di-isopropyl fluorophosphate and Cd2+, Zn2+, Hg2+ and Cu2+. Quantitative neutralization of hydrolytic activity with specific immunoglobulins indicated that the three enzymes were antigenically distinct.  相似文献   

3.
Abstract Pseudomonas syringae cells were exposed to Cu2+ alone or in the precence of acetate, proline or cysteine, at concentrations that reduced free Cu2+ to 1/10 of the total copper. Ligand concentrations (designated as isoeffective) were determined experimentally using a Cu2+-selective electrode and confirmed by computer calculations using published stability constants. Exposure of P. syringae cells to Cu2+ alone resulted in rapid and pronounced cell death, and binding of most of the copper in solution. The addition of acetate, proline or cysteine, a few minutes after Cu2+ treatment, resulted in a significant reduction in cell death, and in the amount of copper bound to the cells. For short exposures to Cu2+, cysteine was more effective than acetate or proline, but after 60 min of treatment, similar results were observed with these ligands. The addition of ligands before Cu2+ resulted in even more reduced copper toxicity. The results showed that, at isoeffective concentrations, weak and moderate copper-ligands can effectively antagonize copper toxicity, and that this protective effect does not require previously equilibrated copper-ligand solutions and is not very dependent of the nature of the ligand.  相似文献   

4.
Effects of mixtures of chloride salts of cadmium, copper and zinc on survival, whole body residues, and histopathology of mummichog, Fundulus heteroclitus (L.), were investigated in synthetic sea water at 20‰ salinity and 20°C. Mixtures of Cu2+ and Zn2+ as indicated by 96 h bioassay studies produced more deaths than expected on the basis of toxicities of individual components. Concentrations of Cd2+ not ordinarily lethal exerted a negative effect on survival of fish intoxicated by salts of copper, zinc, or both.
Atomic absorption determinations of Cd, Cu, and Zn residues in mummichog which survived 96 h exposures to each of these toxicants provided useful indices of total body burdens for these metals. Residues from survivors held in mixtures, especially Cd2+ and Zn2+ mixtures, did not conform to patterns observed for single elements. Whole body aggregates of Cd, Cu, and Zn from dead mummichogs were of limited worth owing to possible accumulation of these metals from the medium after death.
Renal and lateral line canal lesions were noted in all fish subjected to copper concentrations of 1 mg/1 and higher. Renal lesions observed in fish immersed in mixtures of Cu2+ and Cd2+ assumed a damage pattern characteristic of Cd2+; with mixtures of Cu2+ and Zn2+, lesion were typical of Cu2+-induced damage. Lesions induced in lateral line epithelium by Cu2+ were not affected by either Cd2+ or Zn2+. Epithelia lining the oral cavity were necrotized by the caustic action of high levels of Zn2+ (60 mg/1) and of Cu2+ (8 mg/1).  相似文献   

5.
Six-month-old water cultures of Pinus radiataI D. Don seedlings showed optimal growth, and the highest CO2 assimilation and photosystem I-dependent ascorbate/dichlorophenolindophenol → NADP+ electron flow, at 3.0 uM Cu2+ (excess) in the hydroponic media. In the nine-month-old water cultures, when the early Cu deprivation has been overcome, the optimum for plant growth and CO2 fixation shifts to 0.3 u M Cu2+ (normal); at that time, the 3.0 uM Cu2+ water cultures showed toxic symptoms of foliar chlorosis. Under Cu2+ deficient levels (0.03 uM) a clear decrease in the photosystem I-linked electron transport and CO2 assimilation rates, as well as in the whole plant development, could be observed. Both six- and nine-month-old water cultures showed a close relationship between the Cu2+ concentration of the media and the foliar Cu content. However, leaf chlorophyll and the Cu content of thylakoid lamellae showed such a correlation only in the Cu2+ deficient and Cu2+ normal water cultures. The conclusion from these results is that the electron transport rate ascorbate/dicblorophenolindophenol → NADP+, and the Cu content of the photosynthetic membranes, can be used to diagnose a Cu deficiency in Pinus radiata plants.  相似文献   

6.
Growth inhibition of the green alga Dunalietla parva Lerche has been observed during cultivation in low Cu2+ media. A minimum endogenous Cu concentration for unrestricted growth of 100 to 200 nmol ml−1 packed cell volume was estimated. At lower concentrations, Cu deficiency causes a decrease in photosynthesis and respiration. Assay of photosynthetic electron transport rates as well as the determination of several redox components showed that the target of Cu deprivation in the photosynthetic apparatus is the synthesis of Cu-containing plastocyanin. Consequently, inhibited formation of plastocyanin resulted in low activities of photosynthetic electron transport. A secondary, indirect effect of Cu deficiency is the reduction of thylakoid formation resulting in an additional decrease of photosynthesis compared to cultures with sufficient Cu2+.
The inhibitory influence of low Cu2+ on respiration was located at the site of cytochrome oxidase. In contrast to blue-green algae, a strong coordination of the biosynthesis of the cytochrome oxidase complex was evident. During restricted Cu2+ supply the formation of cytochiome aa3 , another component besides Cu, was stalled. The resulting low activities of cytochrome oxidase are responsible for decreased respiratory electron transfer activity from NADPH to oxygen. At Cu2+ concentrations which exert only moderate effects on Dunalietla , the cytochrome oxidase reaction was more strongly affected than the photosystem I reaction.  相似文献   

7.
Abstract Plasmid-encoded copper (Cu2+) resistance in Escherichia coli was due to decreased uptake of Cu2+. The Cu2+-resistant E. coli Rtsl strain contained a 60 MDa plasmid which is known to encode for both Cu2+ and kanamycin resistance. A plasmid-free derivative of the same organism exhibited a greater uptake of Cu2+, and sensitivity to Cu2+ in both respiration and growth studies than the E. coli Rtsl strain.  相似文献   

8.
Addition of small amounts of Fe2+, Zn2+, Cu2+ and thiamine-HCl to the culture medium was required for promoting the galacto-oligosaccharide (Gal-OS)-producing activity of Sterigmatomyces elviae CBS8119, when the concentration of yeast extract in the medium was lowered to 0·1 g l−1. Galacto-oligosaccharide production using a recycling cell culture was performed in a medium containing 360 mg ml−1 of lactose supplemented with optimal concentrations of Fe2+ (1·5 mg l−1 of FeSO4.7H2O), Zn2+ (15 mg l−1 of ZnSO4.7H2O), Cu2+ (0·5 mg l−1 of CuSO4.5H2O) and thiamine-HCl (1 mg l−1 ) . Galacto-oligosaccharide production was maintained at high levels during six cycles of production, with the amount of Gal-OS produced in each cycle being more than 216 mg ml−1 (weight yield of more than 60%).  相似文献   

9.
Copper (Cu)-polluted and unpolluted soils were used to study the effect of initial pollution on soil biological resistance and resilience by measuring the responses to perturbation using different parameters. Microbial biomass carbon, substrate-induced respiration and copy numbers of 16S rRNA gene were grouped as general parameters, while potential ammonia oxidation rate and copy numbers of amo A gene were grouped as specific functions. In addition, to illustrate how initial pollution affects soil biological resistance and resilience following secondary perturbation, the microbial community structure, together with free Cu2+ activities ([Cu2+]) in soil pore water and soil pH were also measured after secondary perturbation. Results showed that general parameters were more stable than specific ones. High [Cu2+] and low pH in soil pore water induced by Cu addition may lead to apparently low resistance and resilience, whereas the formation of a tolerant community after Cu pollution, secondary perturbation and Cu aging may contribute to resistance and resilience. Analysis of the phospholipid fatty acids profile showed that microbial community structure shifted along with the [Cu2+] gradient. The microbial community structure of the control soil was both resistant and resilient to 400 mg kg−1 Cu perturbation, whereas other treatments were neither resistant nor resilient.  相似文献   

10.
Washed Escherichia coli ATCC11775 cells were killed by (–)-epigallocatechin (EGC) in the presence of a non- lethal concentration of Cu2+ (1 μmol l−1) without additional H2O2, but not by (–)-epicatechin (EC). EGC alone (< 0·1 mmol l−1) did not reduce the viability of the cells. The survival curve obtained in the presence of EGC and Cu2+ was similar to that obtained in the presence of (–)-adrenaline (EN) and Cu2+.  相似文献   

11.
An improved method for purification of pectate lyases (PLI and PLII) from culture fluids of Pseudomonas fluorescens CY091 and Ps. viridiflava PJ-08-6 by using a phosphocellulose cation exchanger was described. Analysis of purified PLI and PLII by sodium dodecyl sulphate-polyacrylamide and isoelectric focusing gel electrophoresis revealed that both enzymes had been purified to near homogeneity. Optimal Ca2+ concentration required for PLI and PLII activity was determined to be 0·5 mmol l−1. The Ca2+ requirement could not be replaced by other metal cations such as Mg2+, Cu2+, Zn2+, Fe3+ and Co2+. Optimal pH for activity was determined to be between 8·5 and 9·0. The K m values for sodium polygalacturonate were 1·28 and 1·11 mg ml−1 for PLI and PLII, respectively. Both PLI and PLII were stable at low temperatures (25°C or below) for at least 1 month. However, at 37°C, the activity decreased 50% in 36 h. Optimal temperatures for activity were estimated to be 46° and 52°C for PLI and PLII, respectively. Thermal stability of both enzymes at elevated temperatures (48°C or higher) increased when CaCl2 or a positively charged molecule such as polylysine was present, but decreased when polygalacturonate or a negatively charged molecule such as heparin was present. PLI and PLII exhibit differential degrees of sensitivity to group-specific inhibitors, including iodoacetic acid and diethylpyrocarbonate. This result suggests that both sulphydryl and imidazole groups are important for the catalytic function of PLI and PLII.  相似文献   

12.
Pyoverdine (PvdI) is the major siderophore secreted by Pseudomonas aeruginosa PAOI in order to get access to iron. After being loaded with iron in the extracellular medium, PvdI is transported across the bacterial outer membrane by the transporter, FpvAI. We used the spectral properties of PvdI to show that in addition to Fe3+, this siderophore also chelates, but with lower efficiencies, all the 16 metals used in our screening. Afterwards, FpvAI at the cell surface binds Ag+, Al3+, Cd2+, Co2+, Cu2+, Fe3+, Ga3+, Hg2+, Mn2+, Ni2+ or Zn2+ in complex with PvdI. We used Inductively Coupled Plasma-Atomic Emission Spectrometry to monitor metal uptake in P. aeruginosa : TonB-dependent uptake, in the presence of PvdI, was only efficient for Fe3+. Cu2+, Ga3+, Mn2+ and Ni2+ were also transported into the cell but with lower uptake rates. The presence of Al3+, Cu2+, Ga3+, Mn2+, Ni2+ and Zn2+ in the extracellular medium induced PvdI production in P. aeruginosa . All these data allow a better understanding of the behaviour of the PvdI uptake pathway in the presence of metals other than iron: FpvAI at the cell surface has broad metal specificity at the binding stage and it is highly selective for Fe3+ only during the uptake process.  相似文献   

13.
The activities of 5'-methylthioadenosine (MTA) nucleosidase (EC 2.2.2.28) and 5-methylthioribose (MTR) kinase (EC 2.7.1.100) were related to changes in ethylene biosynthesis in tomato ( Lycopersicon esculentum Mill. cv. Rutgers) and cucumber ( Cucumis sativus Mill. cv. Poinsett 76) fruit following wounding and chemically induced stresses. Stress ethylene formation in wounded tomato and cucumber tissue continued to increase after wounding, reached its peak by 3h, and then declined. The activities of MTA nucleosidase and MTR kinase increased parallel to stress ethylene in both tissues. At peak ethylene formation, MTA and MTR kinase activities were 2- to 4-fold higher in wounded than in intact tissue. Wounded, mature-green tomato tissue treated with specific inhibitors of MTA nucleosidase and MTR kinase showed a significant reduction in the activities of these enzymes, which was concomitant with a decline in stress ethylene biosynthesis. When mature-green tomato discs were infiltrated with [14CH3] MTA and wounded, radioactive MTR and methionine were formed. Incubation of mature-green tomato discs with Cu2+ and Li+ in the presence of kinetin increased ethylene biosynthesis. MTA nucleosidase activity was higher than that of the control in the presence of Cu2+ but not in the presence of Li+, while MTR kinase activity was lower than that of the control in both Cu2+ and Li+ treatments. Data indicate that MTA nucleosidase and MTR kinase are required for wound-induced ethylene biosynthesis but not for chemical stress-induced ethylene by Cu2+ or Li+ treatments.  相似文献   

14.
Abstract Enteropathogenic strains of faecal Escherichia coli produced significantly ( P < 0.01) more maltase than the non-pathogenic strains of the organism. The enzyme was induced by maltose but repressed by glucose and fructose. The maltase was partially purified by ammonium sulphate precipitation, followed by dialysis and gel permeation chromatography. The partially purified maltase had an M r of 144500 and an apparent K m of approx. 7.6 mM for maltose. The enzyme was stimulated by Ca2+, inhibited by Cu2+, Hg2+, Uo2+, IAA and EDTA, and exhibited optimum activity at pH 6.5 at 30°C.  相似文献   

15.
The effect of hydrogen peroxide on spores of Clostridium perfringens   总被引:3,自引:2,他引:1  
Dithiothreitol (DTT)-treated spores of Clostridium perfringens were much more sensitive to lysis by H2O2 in the presence of Cu2+ than untreated spores. Lysis was greatly inhibited by hydroxyl radical (.OH) scavengers such as thiourea, dimethylthiourea and dimethylsulfoxide, suggesting that lysis of spores by H2O2 involves formation of OH by Cu2+-catalysed decomposition of the peroxide. DTT-treated spores took up Cu2+ at almost the same rate and extent as did isolated cortical fragments. Hydrogen peroxide caused both the decrease in optical density and the hexosamine solubilization of cortical fragments which bound Cu2+.  相似文献   

16.
Of 13 Rhizobium and Bradyrhizobium strains investigated for the production of cellular and extracellular phosphodiesterase and phosphotriesterase, all were found to produce both enzymes. Phosphodiesterase was produced at a much higher level than phosphotriesterase. Rhizobium meliloti TAL 1373 was the most productive. The extracellular enzymes were activated by inclusion in the assay mixture of Ca2+ or Mg2+. The enzymes were inhibited by Zn2+ but not significantly affected by Cu2+, Co2+ and Mn2+. Both hydrolases were inhibited by dithiothreitol but not by thiol-directed inhibitors, suggesting that sulphydryl groups are not directly involved in catalysis. The enzymes have the ability to hydrolyse some organophosphorus compounds, suggesting that Rhizobium and Bradyrhizobium strains play an important role in the degradation of organophosphorus pesticides.  相似文献   

17.
A soil streptomycete designated as Streptomyces sp. A8 produced an extracellular collagen hydrolysing enzyme that appeared to be 'true collagenase'as it degraded native collagen under physiological conditions and cleaved the synthetic hexapeptide 4-phenylazobenzyloxycarbonyl-L-prolyl-L-leucyl-glycyl-L-prolyl-D-arginine into two tripeptides. The enzyme was purified by diethyl aminoethyl cellulose chromatography and Sephadex G-150 gel filtration. The purified enzyme had an apparent molecular weight of about 75000 by SDS-polyacrylamide gel electrophoresis. Treatment with lithium chloride did not dissociate it into subunits. A strong inhibition was observed with chelating agents such as α-α-dipyridyl and 8-hydroxyquinoline. Ethylene diamine tetracetate completely inhibited the enzyme activity. Among the cations tested only Ca2 + and Mg2 + enhanced the collagenase activity. Heavy metal ions like Pb2 +, Ag+, Cu2 + and Zn2 + strongly inhibited the enzyme. The EDTA inhibition could be reversed with Ca2 +. Cysteine and reduced glutathione caused significant reduction in enzyme activity. Parachloromercuribenzoate and iodoacetamide had no effect on the collagenase. Amino acid analysis revealed the absence of cysteine and tyrosine. Many of the properties were the same as collagenases of Clostridium histolyticum and Vibrio alginolyticus.  相似文献   

18.
Abstract β-xylosidase (EC 3.2.1.37) has been purified from Aspergillus nidulans mycelium grown on oat-spelt xylan as sole carbon source. Its pH optimum for activity was found to be 5.0 and the optimum temperature was 50 °C. Its molecular mass was estimated by gel filtration to be 180000. Using p-nitrophenyl-β-d-xylopyranoside as substrate, the K m and V max values have been found to be 1.1 mM and 25.6 μmol min−1(mg protein)−1, respectively. Enzyme activity was inhibited by Hg2+, Ag2+, and Cu2+ at a concentration of 1 × 10−3 M. The synthesis of β-xylosidase in A. nidulans is strongly induced by arabinose and xylose and is subject to carbon catabolite repression mediated by the cre A gene product.  相似文献   

19.
M.E.FÁREZ-VIDAL, A. FERNÁNDEZ-VIVAS, F. GONZÁLEZ AND J.M. ARIAS. 1995. The extracellular amylase activity from Myxococcus coralloides D was purified by Sephacryl S-200 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-25. The molecular weight was estimated by SDS-PAGE and by gel filtration as 22.5 kDa. The optimum temperature was 45°C. The pH range of high activity was between 6.5 and 8.5, with an optimum at pH 8.0. Activity was strongly inhibited by Hg2+, Zn2+, Cu2+, Ag+, Pb2+, Fe2+ and Fe3+, EDTA and glutardialdehyde, but was less affected by Ni2+ and Cd2+. Li+, Mg2+, Ba2+, Ca2+, N -ethylmaleimide, carbodiimide and phenyl methyl sulphonyl fluoride had almost no affect. The K m (45°C, pH 8) for starch hydrolysis was 2.0 times 10-3 gl-1. Comparison of the blue value-reducing curves with the time of appearance of maltose identified the enzyme produced by M. coralloides D as an α-amylase.  相似文献   

20.
3β-Hydroxysteroid dehydrogenase/steroid Δ5 → 4-isomerase (3β-HSD/isomerase) was expressed by baculovirus in Spodoptera fungiperda (Sf9) insect cells from cDNA sequences encoding human wild-type I (placental) and the human type I mutants - H261R, Y253F and Y253,254F. Western blots of SDS-polyacrylamide gels showed that the baculovirus-infected Sf9 cells expressed the immunoreactive wild-type, H261R, Y253F or Y253,254F protein that co-migrated with purified placental 3β-HSD/isomerase (monomeric Mr=42,000 Da). The wild-type, H261R and Y253F enzymes were each purified as a single, homogeneous protein from a suspension of the Sf9 cells (5.01). In kinetic studies with purified enzyme, the H261R mutant enzyme had no 3β-HSD activity, whereas the Km and Vmax values of the isomerase substrate were similar to the values obtained with the wild-type and native enzymes. The Vmax (88 nmol/min/mg) for the conversion of 5-androstene-3,17-dione to androstenedione by the Y253F isomerase activity was 7.0-fold less than the mean Vmax (620 nmol/min/mg) measured for the isomerase activity of the wild-type and native placental enzymes. In microsomal preparations, isomerase activity was completely abolished in the Y253,254F mutant enzyme, but Y253,254F had 45% of the 3β-HSD activity of the wild-type enzyme. In contrast, the purified Y253F, wild-type and native enzymes had similar Vmax values for substrate oxidation by the 3β-HSD activity. The 3β-HSD activities of the Y253F, Y253,254F and wild-type enzymes reduced NAD+ with similar kinetic values. Although NADH activated the isomerase activities of the H261R and wild-type enzymes with similar kinetics, the activation of the isomerase activity of H261R by NAD+ was dramatically decreased. Based on these kinetic measurements, His261 appears to be a critical amino acid residue for the 3β-HSD activity, and Tyr253 or Tyr254 participates in the isomerase activity of human type I (placental) enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号