首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tonoplast vesicles were prepared from the flesh tissue of maturepear fruit. Sugar uptakes into the vesicles determined by twodifferent methods, the membrane and the gel filtration methods,were quite similar. The uptake was highest for glucose and subsequently,in order, for fructose, sucrose and sorbitol. It was not stimulatedby addition of ATP, although the vesicles could create a protongradient. However, the uptakes were significantly inhibitedby p-chloromercuribenzene sulphonate (PCMBS, SH-reagent andinhibitor of sugar transporter). Further, the PCMBS-sensitiveuptakes of glucose and fructose saturated with their increasedconcentrations. Thus, these PCMBS-sensitive uptakes are mediatedby the transporter of facilitated diffusion. The uptakes ofglucose or fructose each had two Km values. Km values for glucosewere 0.35 and 18 mM, and those for fructose were 1.6 and 25raM. The uptake of 0.2 mM glucose was inhibited by 2 mM fructoseand that of 2 mM fructose was inhibited by 2 mM glucose, butneither was inhibited by sucrose or sorbitol. O-methyl-glucose(OMG) also inhibited both the glucose and fructose uptakes.Therefore, the same transporter may mediate both glucose andfructose uptakes at lower concentrations; this hexose transportsystem differed from the sucrose and sorbitol transport systems. 1Research Fellow of the Japan Society for the Promotion of Science. 2Present address: Faculty of Agriculture, Tohoku University,1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981 Japan.  相似文献   

2.
[1-14C]-ethanol supplied to the cotyledons of 9-d-old Euphorbialathyris seedlings was rapidly incorporated into unsaponifiablelipids, particularly into sterols, latex triterpenols and intothe triterpene ketones of the epicuticular wax. The [14C]-triterpenoidproduction from ethanol was hardly affected by sucrose in theexternal medium when sucrose uptake rates were low, but whenthe uptake rate was higher the [14C]-triterpenoid productionfrom [14C]-ethanol was greatly reduced. This observation isconsistent with the proposition that at high sucrose uptakerates, some sucrose is converted into ethanol, so that the incorporationof [14C]-ethanol into triterpenoids is reduced by competitionwith endogenously formed ethanol. A calculation based on theputative daily ethanol production in the cotyledons and thedaily triterpenoid production of seedlings indicates that about10 % of the triterpenoid synthesis in vivo may be from ethanol. Ethanol, Euphorbia lathyris, fermentation, seedling, triterpenoid biosynthesis  相似文献   

3.
To examine the effects of ethylene on sugar transport from endospermsto coleoptiles in rice (Oryza sativa L. cv. Sasanishiki) seedlings,the contents of free sugars in the coleoptiles of explants fedcold glucose and the distributions of 14C-activities after feedingof 14C-glucose to the scutella were determined at various timesafter ethylene application. Changes in sucrose, glucose andfructose in the cold glucose-fed explants exposed to ethylenewere similar to those in the ethylene-treated intact seedlingshaving endosperms. Ethylene enhanced the transport of 14C-labeledmetabolites from the scutella to the coleoptiles. Most of the14C accumulated in the ethylene-treated coleoptiles were presentas neutral substances in the ethanol-soluble fraction. Regardlessof the presence or absence of ethylene, the incorporation of14C into sucrose preceded that into glucose and fructose. Theglucose and fructose moieties of 14C-sucrose in the coleoptileswere almost equally labeled, and the specific activities of14C-sucrose were higher than those of 14C-glucose and 14C-fructose.These results suggested that sucrose synthesized in the scutellawas exported to the coleoptiles, and cleaved there into glucoseand fructose. Ethylene may accelerate the transport of 14C-labeledmetabolites by activating sucrose cleavage in the coleoptiles. (Received July 1, 1985; Accepted September 17, 1985)  相似文献   

4.
Assimilate distribution in leaves of Lolium temulentum was establishedby root absorption of [14C]sucrose and after exposure to 14CO2.Age determined the amount of carbon assimilated, with more labelbeing incorporated during expansion than at maturity. Duringsenescence 14C assimilation was much lower. Ethanol-solubleextracts from various tissues of root-labelled plants containedmost of the radioactivity chiefly in basic and acidic compounds.The neutral fraction was composed predominantly of sucrose. Sucrose was comparably labelled in leaves from plants fed equalamounts of either [14C]sucrose, glucose, or fructose and onlytraces of labelled monosaccharides appeared in extracts. Radioactive sucrose was translocated rapidly from mature leaveswhereas, in the expanding leaf, carbon incorporation was directedtowards growth and the greater proportion of label present atligule formation was in ethanol-insoluble material. Induced senescence, of a mature leaf fed during expansion, produceda rapid loss from the pool of insoluble 14C. This was accompaniedby a reduction in the contents of chlorophyll and soluble proteinand an accumulation of amino acids. The onset of senescencecaused changes in leaf sugar levels which were correlated withincreased rates of respiration.  相似文献   

5.
The uptake and metabolism of sugars by suspension-cultured Catharanthusroseus cells were investigated. Substantially all the sucrosein the culture medium was hydrolyzed to glucose and fructosebefore being taken up by the cells. The activity of invertasebound to cell walls, determined in situ, was high at the earlystage of culture. Glucose was more easily taken up by the cellsthan was fructose. Tracer experiments using [U-14C]glucose and[U-14C]fructose indicated that glucose is a better precursorfor respiration than fructose, while fructose is preferentiallyutilized for the synthesis of sucrose, especially in the earlyphase of cell growth. Possible metabolic routes of sugar insuspension-cultured Catharanthus roseus cells are discussedin the context of these results. Catharanthus roseus, Madagascar periwinkle, suspension culture, sucrose, glucose, fructose, metabolism, glycolysis  相似文献   

6.
To investigate the function and subcellular localization ofsorbitol oxidase, free cells, protoplasts and isolated vacuolesof apple cotyledons (Malus pumila Mill. var. domestica Schneid.)were examined by differential and sucrose density gradient centrifugation.Twenty percent of the activity of sorbitol oxidase in the wholetissue was contained in the subcellular fraction (d=1.06) whichcorresponded closely to the main peaks of activity and proteinafter the recentrifugation of the 150,000?g pellet of rupturedvacuoles with a linear sucrose density gradient. The enzymethus appears to be derived from the tonoplast membrane. Thistonoplast membrane-bound sorbitol oxidase may play an importantrole in the transport of vacuolar sorbitol into the cytoplasm,rather than in the transport of sorbitol into the vacuole. About10% of the enzyme activity also occurred in the subcellularfraction having a density of 1.12–1.16, which coincidedwith the peaks of acid phosphatase and ATPase activities. Thereforesorbitol oxidase may also be associated with the plasma membrane.Furthermore, 30–40% of its activity was located in theinterspace between the cell wall and the plasma membrane, orperhaps attached weakly to them. These results suggest thatsorbitol is transported into the cytoplasm by being convertedto glucose by sorbitol oxidase. 1 This paper is contribution A-138 of the Fruit Tree ResearchStation. (Received January 20, 1982; Accepted May 18, 1982)  相似文献   

7.
Ammonia Induces Starch Degradation in Chlorella Cells   总被引:3,自引:0,他引:3  
When ammonia was added to cells of Chlorella which had fixed14CO2 photo synthetically, 14C which had been incorporated intostarch was greatly decreased. A similar effect was observedwhen potassium nitrate and sodium nitrite were added. The ammonia-induceddecrease in 14C-starch was observed in all species of Chlorellatested. With cells of C. vulgaris 11h, most of the radioactivityin starch was recovered in sucrose, indicating that ammoniainduces the conversion of starch into sucrose. The percent of14C recovered in sucrose differed from species to species andpractically no recovery in sucrose was observed in C. pyrenoidosa.In most species tested, the enhancing effects of blue lightand ammonia on O2 uptake as well as the ammonia effect on starchdegradation were greater in cells which had been starved inphosphate medium in the dark than in non-starved cells. In contrast,the enhancing effect of ammonia on dark CO2 fixation was muchgreater in non-starved cells. C. pyrenoidosa was unique in thatblue light did not show any effect on its O2 uptake. (Received August 15, 1984; Accepted November 16, 1984)  相似文献   

8.
Import of sucrose and its transformation to galactomannan andraffinose-oligosaccharides have been studied in the developingguar seed. The amount of galactomannan gradually increased withthe ageing of the seed. During the entire period of pod development,sucrose constituted the major portion of the free sugars inthe seed (both endosperm and cotyledons) as well as in the podwall. Besides myo-inositol, the free sugars detected in thedeveloping endosperm and cotyledons were glucose, fructose,raffinose and stachyose. Some compounds, possibly glycosides(RG values higher than that of fructose), were also detectedin the endosperm. In the later stages of seed development, therelative proportion of raffinose in the free sugars increased,reaching 50% of the total free sugars in 77-d-old cotyledons.With pod maturity, the activities of soluble acid and boundacid invertases in the pod wall increased manifold with a concomitantdecline in the non-reducing sugar content. These enzymes seemto be involved in the mobilization of sucrose from this fruitingstructure into the seed. An increased synthesis of raffinose-oligosaccharidesboth in the endosperm and cotyledons was associated with highactivities of soluble acid invertase (pH 4.8) and sucrose-UDPglucosyl transferase in these tissues. Feeding uniformly labelled14C-sugars to the detached intact pods as well as to the isolatedendosperm and cotyledons resulted in labelling of all endogenousfree sugars and galactomannan. The uptake and incorporationinto galactomannan of 14C was stimulated by Co2+, Mn2+ and Mg2+.Except for mannose, a major proportion of the 14C from glucose,fructose and sucrose appeared in sucrose in both endosperm andcotyledons indicating a fast reconstitution of sucrose in situ.Based on the present results, a possible mode of transformationof sucrose to galactomannan and raffinose-oligosaccharides hasbeen proposed. Key words: Sucrose, galactomannan, raffinose-oligosaccharides, invertase, sucrose-UDP glucosyl transferase, 14C-incorporation, guar seed  相似文献   

9.
Analysis of products formed in Chlorella vulgaris 11 h cellsduring photosynthesis in air containing 3,000 ppm 14CO2 at varioustemperatures revealed that the level of 14C-starch was maximumaround 20–24?C and decreased with further rise in temperatureuntil 40?C, while 14C-sucrose greatly increased at temperaturesabove about 28?C. Elevating the temperature from 20 to 38?Cduring photosynthetic 14CO2 fixation resulted in a remarkabledecrease in 14C in starch and a concomitant increase in 14Cin sucrose. This conversion of starch to sucrose when shiftingthe temperature from 20 to 38?C proceeded even in the dark.Hydrolysis of sucrose by rß-fructosidase showed that,irrespective of the experimental conditions, the radioactivitiesin sucrose were equally distributed between glucose and fructose.The enhancement of starch degradation with temperature risewas more remarkable than that of the activity of ribulose bisphosphatecarboxylase from the same cells. When Chlorella cells whichhad been preloaded with 14C-starch after photosynthesis for30 min at 20?C were incubated in the dark for an additional30 min at 20?C, 14C-starch was degraded by only about 4%. However,the values after 30-min dark incubation at 28, 32, 36 and 40?Cwere increased by about 10, 19, 36 and 50%, respectively. Duringthe temperature-dependent conversion of starch to sucrose, nosignificant amount of radioactivity accumulated in free glucoseand maltose. (Received October 27, 1981; Accepted January 9, 1982)  相似文献   

10.
The uptake kinetics of sorbitol, sucrose, glucose and fructoseacross the plasma membrane using protoplasts isolated from applefruit flesh (Malus pumila Mill. var. domestica Schneid.) wasinvestigated. When sorbitol was taken up into the cell, PCMBS-sensitivesaturable transport was distinguishable from the diffusive transport.At a low sorbitol concentration, the saturable transport systemaccounted for more than 50% of the total uptake, whereas ata high concentration the diffusive transport system was moredominant. The saturable transport was suggested be a carrier-mediatedtransport system coupled with ATP because the system was inhibitedCCCP or orthovanadate. The Km value for sorbitol was computedto be 3.6mM. A carrier-mediated transport system coupled withATP was also observed for glucose and fructose with correspondingKm values of 5.0 and 2.5 mM. However, no saturable transportfor sucrose was observed over a range of 0.1 to 10 mM sucroseconcentration. The relationship among these sugar transportsystems across the plasma membrane, apoplastic unloading, andsugar accumulation vacuoles are discussed. 1Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Chikusa, Nagoya 464, Japan. (Received April 8, 1988; Accepted June 8, 1988)  相似文献   

11.
Callose formation in phloem tissue was promoted by 0.5% eosinin 1 cm segments taken from first year Willow (Salix viminalisL.) shoots and by localized heat treatments in intact secondyear shoots. The eosin did not cause any change in the incorporationof 14C from labelled sucrose into an insoluble fraction butless of the label: from UDP-glucose labelled in the glucosemoiety was incorporated when eosin was present. Localized heattreatments of intact second-year tissue which was translocating[14C]sucrose failed to cause an increase in the amount of labelin an insoluble fraction in the zone where callose formationwas stimulated. The results indicate that the callose formedrapidly in response to stress and wounding is not derived directlyfrom translocated sucrose. An alternative possible origin, fromsugar nucleotides released from ruptured plastids, is discussed.  相似文献   

12.
M.7 apple rootstocks were used during the peak period of shootextension for comparisons of dry-matter production per unitleaf area between intact plants and others which had been partiallydefoliated. Dry-matter increment per unit leaf area over a 16-dayinterval was some 70 per cent higher in partially defoliatedplants than in controls. 14CO2 was supplied to designated leaves of comparable age andposition. Sample discs were taken from the ‘fed’leaves at intervals up to 9 days from supplying 14CO2. Translocationrates were estimated by comparison with leaves on a third setof plants whose petioles were steamed to prevent translocationimmediately on removal of the 14CO2 feeding chambers. Translocationrates in partially defoliated plants were enhanced some 30 percent compared with controls. It is suggested that features of the plant outside the studiedleaves may have contributed to the overall efficiency of assimilateproduction and utilization. Malus sylvestris L., apple, dry matter production, leaf efficiency, defoliation, translocation, assimilate distribution, sorbitol, sucrose  相似文献   

13.
Unsuitable temperatures are frequently encountered by soybean(Glycine max L. Merr.) plants grown in the field. Certain polyolshave been reported to protect plants from high temperature orfrost damage. Controlled environment studies were conductedto investigate the effect of stressful temperature regimes onthe content of pinitol (3-O-methyl-D-chiro-inositol) in soybeanplants. Hydroponically-grown soybean plants were subjected tohigh (35/30 C) or low (15/10 C) day/night temperature stresses,and pinitol content in different plant parts was determinedusing high performance liquid chromatography (HPLC). A syntheticplant growth regulator, PGR-IV, was foliarly applied to theplants to evaluate its effect on pinitol content in differentplant components. Uniformly-labelled 14C-glucose was fed intothe leaves via the transpiration stream, and the effects ofhigh temperature and EXP-S1089, another synthetic plant growthregulator, on the incorporation of 14C-glucose into pinitolwas evaluated using HPLC separation and scintillation spectrometry.High-temperature stress significantly increased plant pinitolcontent and the incorporation of 14C-glucose into pinitol, butdecreased the content of sucrose, glucose and fructose. Underlow-temperature stress, there was hardly any change in pinitolcontent, but a drastic increase in soluble sugars. PGR-IV enhancedpinitol translocation from leaves to stems and roots, whileEXP-S1089 increased pinitol/sucrose ratio. Accumulation of pinitolmay be an adjustment mechanism of the plant to reduce high-temperaturedamage, but not low-temperature injuries. Key words: Pinitol, soybean, temperature, plant growth regulator  相似文献   

14.
Plastids were isolated from the developing endosperm of Ricinuscommunis L. and purified by rate-zonal centrifugation on discontinuoussucrose gradients. Assay conditions were optimized for the uptakeand incorporation of 14C-acetate into lipids by intact plastids.Using the optimized conditions, the uptake and incorporationof several 14C-glycolytic intermediates into lipids were examined.Neither sucrose nor glucose-6-phosphate was incorporated intolipids. In order of increasing magnitude of incorporation, glucose,fructose, 3-phosphoglycerate, acetate, and pyruvate were metabolizedto chloroform-methanol (2: 1 v/v) soluble products. Pyridoxal-5'-phosphateinhibited the incorporation of 3-phosphoglycerate into lipidswhereas -cyano-4 hydroxycinnamate was without effect on pyruvateincorporation. Avidin and cerulenin did not inhibit the incorporationof acetate into lipids by intact plastids. Key words: Ricinus communis, Plastids, Lipid synthesis, Glycolytic intermediates  相似文献   

15.
Seedlings from Euphorbia canariensis and Euphorbia lambii weregrown in the dark at 25 °C. Protein and triglyceride contentas well as levels of sugars and amino acids in the endospermwere determined during endosperm depletion. In the endospermof Euphorbia canariensis, relatively low levels of amino acids(up to 1 µmol.endosperm–1) were found of which glutamine/glutamateaccounted for 40% at the stage of radicle emergence. High levelsof amino acids (up to 4 µmol.endosperm–1) comparedwith sugars (up to 2 µmol sucrose.endosperm–1) weredetected in the endosperm of Euphorbia lambii. Arginine wasthe main component (28 µmol%) of the amino acids in thistissue. In both species amino acid composition changed graduallyduring endosperm depletion. Cotyledons retained their ability to absorb a variety of watersoluble substrates after removal of the endosperm. 14C from[U-14C]sucrose was effectively incorporated into the triterpenesof the laticifers and to a lesser extent into the sterols ofthe seedling. The highest incorporation values were found inyoung seedlings about 2 d after the emergence of the radicle.Seedlings of this age also showed high incorporation rates of14C from labelled alanine, serine, threonine, valine, leucineand isoleucine into both triterpenols and sterols, but no generalconclusions about metabolic channelling in lipid synthesis couldbe made. Endosperm, Euphorbia canariensis L. Euphorbia lambii Svent., sterols, triterpenols, amino acids, laticifer, biosynthesis  相似文献   

16.
The fate of 14C-glucose fed through scutella of rice (Oryzasativa L. cv. Sasanishiki) seedling explants was investigatedin relation to ethylene action on sugar translocation to growingcoleoptiles and leaves. In the scutellum, sucrose, UDPglucoseand F6P were rapidly labeled, and sucrose-phosphate synthaseactivity was higher than sucrose synthase activity. Radioactivesucrose soon appeared in both coleoptiles and leaves, and increasedrapidly. Its specific activity in both tissues became almostequal to that in the scutella. The specific activities of 14C-glucosein both coleoptiles and leaves changed almost in parallel tothose of 14C-fructose. These results suggest that sucrose wassynthesized in the scutellum and exported to the coleoptileand leaf, where it was cleaved to glucose and fructose. Ethylene slightly increased the specific activities of 14C-sucrosein all tissues, but markedly increased those of l4C-glucoseand -fructose only in the coleoptile. We assume that the ethyleneenhancement of sucrose transport from scutellum to the coleoptileresults from the activation of sucrose unloading in the growingcoleoptile where imported sucrose is cleaved into glucose andfructose. (Received May 25, 1987; Accepted October 30, 1987)  相似文献   

17.
The rate of carbon import by tomato fruits has been relatedto their carbon metabolism by examining the effects of fruittemperature on the metabolism of imported assimilates. 14C–sucrose,–glucose, –fructose, –malic acid and –citricacid were injected individually into young growing tomato fruitswhich were subsequently maintained at 25 or 5 °C for 48h. Fruit temperature greatly affected the proportions of 14Clost from the fruits by export and respiration. Only 40 percent of the injected 14C from 14C–sugars and 20 per centfrom 14C–acids was recovered from fruits at 25 °C.Less than 10 per cent of the injected 14C was exported, thebalance being respired. In contrast, more than 50 per cent ofthe injected 14C was recovered from cooled fruits, in whichthe import rate of carbon was presumably reduced, and 20–36per cent of injected 14C was exported. Cooling enhanced thesynthesis of 14C–sucrose from injected 14C–hexosesand inhibited the incorporation of 14C into starch and insolubleresidue. When 14C–sugars were injected, radioactivityexported from the cooled fruits was detected as sucrose in thephloem of the peduncles; radioactivity was also detected instems and roots when fruits were cooled. In almost fully–grownfruits injected 14C–compounds were metabolized less readilythan in smaller fruits. Conversion of 14C–hexoses to 14C–sucrosewas again enhanced by cooling (5 °C, but was less in fruitsmaintained at 35 °C than in controls. Lycopersicon esculentum, tomato, fruit, translocation, carbon metabolism  相似文献   

18.
The activities of Hill reaction and photosynthetic 14CO2 fixationin bundle sheath strands enzymatically isolated from millet(Panicum miliaceum) were 3–15 times as high as those observedin corn (Zea mays). In both preparations, 3-phosphoglyceratewas the initial 14CO2 fixation product and the radioactivitywas incorporated into sucrose and insoluble compounds (glucose-polymers)during the later period. After 20 sec of photosynthetic 14CO2fixation, the percent of 14C incorporated into sugar phosphatesin millet was about 3 times as high as that in corn, while incorn, the percent of 14C in 3-phosphoglycerate was higher thanthat observed in millet throughout the experimental period.When 14C-phosphoglycerate was added to the isolated bundle sheathstrands, the rates of transfer of the radioactivity to dihydroxyacetonephosphate and sugar diphosphates in millet were significantlyhigher than those in corn. These results indicate that in thebundle sheath strands isolated from corn in which photosystemII activity is deficient, the reductive pentose cycle is impairedat the reduction step of 3-phosphoglycerate to glyceraldehydephosphate due to the limited supply of NADPH through the photoelectrontransport system. In contrast, the bundle sheath strands isolatedfrom millet which have adequate photosystem II activity cancarry out normal photosynthetic CO2 fixation. (Received January 23, 1975; )  相似文献   

19.
Externally supplied [3H]myo-inositol and [14C]glucose were incorporatedin cell-wall fractions of segments of etiolated squash hypocotyl.The extent of incorporation of [14C]glucose into cell-wall fractionswas very much greater than that of [3H]myo-inositol. Radioactivityfrom [14C]-glucose was effectively incorporated into hemicelluloseB and cellulose fractions and was incorporated uniformly intohexose, pentose and uronic acid residues, but radioactivityfrom [3H]myo-inositol was incorporated predominantly into uronicacid and pentose residues in the pectin and hemicellulose Bfractions. Exogenously applied ABA significantly suppressed the elongationof segments of squash hypocotyl and the incorporation of radioactivityfrom [l4C]glucose and [3H]myo-inositol into the segments. Furthermore,ABA significantly inhibited the distribution of incorporatedradioactivity from [14C]glucose into the cellulose fraction,but did not affect distribution into the pectic fraction. Bycontrast, ABA only slightly inhibited the distribution of theincorporated radioactivity from [3H]myo-inositol into the pecticfraction. These results suggest that most of the cell-wall polysaccharidesin segments of squash hypocotyl are synthesized via the UDP-sugarpathway, and that ABA significantly inhibits the synthesis ofcellulose but not the synthesis of pectic polysaccharides whenABA suppresses the elongation of the segments. (Received March 25, 1988; Accepted November 15, 1988)  相似文献   

20.
14C-U-sugars were introduced into tobacco plants through themesophyll, the veins of the first order of branching, and themidrib, and 14C-compounds in the veins and the midrib whichtranslocated towards the base of the midrib were traced duringthe period of 120 min after the 14C-sugar introductions. 1) When 14C-U-sucrose was introduced into the leaf, no matterwhat the means of feeding was, most of the 14C which translocatedbasipetally in the veins and the midrib was found in the formof sucrose. 2) When 14C-U-glucose or 14C-U-fructose was administered tothe leaf dirough the cut vein of the first order of branching,most of the 14C which translocated basipetally in the veinsand the midrib was found in the form of sucrose. 3) 14C-U-glucose or 14C-U-fructose injected into the vascularbundles of the midrib was translocated basipetally, as such,10 and 30 min after injection; and at 30 min, the amount ofthe 14C-sucrose in the midrib attained 9–22% of the 80%ethanol-soluble 14C in the midrib. 4) When 14C-U-glucose or 14C-U-fructose was supplied to themesophyll, the radioactivities of these hexoses were predominantin the first and second veins soon after application, then decreasingwith a concomitant increase in the radioactivity of the 14C-sucrose. From these results, it was inferred that in the veins of thefirst and second order of branching, glucose and fructose whichmoved from the mesophyll did not translocate as such, but wereutilized for the synthesis of sucrose available for translocationvia the midrib to the stem. 1A part of this paper was presented at the Crop Science Societyof Japan, in April, 1969 (Received December 8, 1969; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号