首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The NFkappaBs regulate an array of physiological and pathological processes, including propagation of mitochondrial respiratory stress signaling in mammalian cells. We showed previously that mitochondrial stress activates NFkappaB using a novel calcineurin-requiring pathway that is different from canonical or non-canonical pathways. This study shows that IkappaBbeta is essential for the propagation of mitochondrial stress signaling. Knock down of IkappaBbeta, but not IkappaBalpha, mRNA reduced the mitochondrial stress-mediated activation and nuclear translocation of cRel:p50, inhibiting expression of nuclear target genes RyR1 and cathepsin L. IkappaBbeta mRNA knock down also reduced resistance to staurosporine-induced apoptosis and decreased in vitro invasiveness. Induced receptor switching to insulin-like growth factor-1 receptor and increased glucose uptake are hallmarks of mitochondrial stress. IkappaBbeta mRNA knock down selectively abrogated the receptor switch and altered tubulin cytoskeletal organization. These results show that mitochondrial stress signaling uses an IkappaBbeta-initiated NFkappaB pathway that is distinct from the other known NFkappaB pathways. Furthermore, our results demonstrate the distinctive physiological roles of the two inhibitory proteins IkappaBbeta and IkappaBalpha.  相似文献   

2.
We have previously shown that disruption of mitochondrial membrane potential by depletion of mitochondrial DNA (mtDNA) or treatment with a mitochondrial ionophore, carbonyl cyanide m-chlorophenylhydrazone, initiates a stress signaling, which causes resistance to apoptosis, and induces invasive behavior in C2C12 myocytes and A549 cells. In the present study we show that calcineurin (Cn), activated as part of this stress signaling, plays an important role in increased glucose uptake and glycolysis. Here we report that, although both insulin and insulin-like growth factor-1 receptor levels (IR and IGF1R, respectively) are increased in response to mitochondrial stress, autophosphorylation of IGF1R was selectively increased suggesting a shift in receptor pathways. Using an approach with FK506, an inhibitor of Cn, and mRNA silencing by small interference RNA we show that mitochondrial stress-activated Cn is critical for increased GLUT 4 and IGF1R expression and activation. The importance of the IGF1R pathway in cell survival under mitochondrial stress is demonstrated by increased apoptosis either by IGF1R mRNA silencing or by treatment with IGF1R inhibitors (AG1024 and picropodophyllin). This study describes a novel mechanism of mitochondrial stress-induced metabolic shift involving Cn with implications in resistance to apoptosis and tumor proliferation.  相似文献   

3.
Regulation of tumor necrosis factor cytotoxicity by calcineurin   总被引:1,自引:0,他引:1  
Cyclosporin (CsA) inhibits mitochondrial death signaling and opposes tumor necrosis factor (TNF)-induced apoptosis in vitro. However, CsA is also a potent inhibitor of calcineurin, a phosphatase that may participate in cell death. Therefore, we tested the hypothesis that calcineurin regulates TNF cytotoxicity in rat hepatoma cells (FTO2B). TNF-treated FTO2B cells appeared apoptotic by DNA fragmentation, nuclear condensation, annexin V binding, and caspase activation. We studied two calcineurin inhibitors, CsA and FK506, and found that each potently inhibited TNF cytotoxicity. Western blot demonstrated calcineurin in FTO2B homogenates. In a model of mitochondrial permeability transition (MPT), we found that CsA prevented MPT and cytochrome c release, while FK506 inhibited neither. In summary, we present evidence that calcineurin participates in an apoptotic death pathway activated by TNF. CsA may oppose programmed cell death by inhibiting calcineurin activity and/or inhibiting mitochondrial signaling.  相似文献   

4.
5.
J Chung  C J Kuo  G R Crabtree  J Blenis 《Cell》1992,69(7):1227-1236
The macrolide rapamycin blocks cell cycle progression in yeast and various animal cells by an unknown mechanism. We demonstrate that rapamycin blocks the phosphorylation and activation of the 70 kd S6 protein kinases (pp70S6K) in a variety of animal cells. The structurally related drug FK506 had no effect on pp70S6K activation but at high concentrations reversed the rapamycin-induced block, confirming the requirement for the rapamycin and FK506 receptor, FKBP. Rapamycin also interfered with signaling by these S6 kinases, blocking serum-stimulated S6 phosphorylation and delaying entry of Swiss 3T3 cells into S phase. Neither rapamycin nor FK506 blocked activation of a distinct family of S6 kinases (RSKs) or the MAP kinases. These studies identify a rapamycin-sensitive signaling pathway, argue for a ubiquitous role for FKBPs in signal transduction, indicate that FK506-FKBP-calcineurin complexes do not interfere with pp70S6K signaling, and show that in fibroblasts pp70S6K, not RSK, is the physiological S6 kinase.  相似文献   

6.
7.
8.
Hair growth is a highly regulated cyclical process. Immunosuppressive immunophilin ligands such as cyclosporin A (CsA) and FK506 are known as potent hair growth modulatory agents in rodents and humans that induce active hair growth and inhibit hair follicle regression. The immunosuppressive effectiveness of these drugs has been generally attributed to inhibition of T cell activation through well-characterized pathways. Specifically, CsA and FK506 bind to intracellular proteins, principally cyclophilin A and FKBP12, respectively, and thereby inhibit the phosphatase calcineurin (Cn). The calcineurin (Cn)/NFAT pathway has an important, but poorly understood, role in the regulation of hair follicle development. Here we show that a novel-splicing variant of calcineurin Aß CnAß-FK, which is encoded by an intron-retaining mRNA and is deficient in the autoinhibitory domain, is predominantly expressed in mature follicular keratinocytes but not in the proliferating keratinocytes of rodents. CnAß-FK was weakly sensitive to Ca2+ and dephosphorylated NFATc2 under low Ca2+ levels in keratinocytes. Inhibition of Cn/NFAT induced hair growth in nude mice. Cyclin G2 was identified as a novel target of the Cn/NFATc2 pathway and its expression in follicular keratinocytes was reduced by inhibition of Cn/NFAT. Overexpression of cyclin G2 arrested the cell cycle in follicular keratinocytes in vitro and the Cn inhibitor, cyclosporin A, inhibited nuclear localization of NFATc2, resulting in decreased cyclin G2 expression in follicular keratinocytes of rats in vivo. We therefore suggest that the calcineurin/NFAT pathway has a unique regulatory role in hair follicle development.  相似文献   

9.
Mechanism of osteogenic induction by FK506 via BMP/Smad pathways   总被引:1,自引:0,他引:1  
FK506 is an immunosuppressant that exerts effects by binding to FK506-binding protein 12 (FKBP12). Recently, FK506 has also been reported to promote osteogenic differentiation when administered locally or in vitro in combination with bone morphogenetic proteins (BMPs), although the underlying mechanism remains unclarified. The present study initially showed that FK506 alone at a higher concentration (1muM) induced osteogenic differentiation of mesenchymal cell lines, which was suppressed by adenoviral introduction of Smad6. FK506 rapidly activates the BMP-dependent Smads in the absence of BMPs, and the activation was blocked by Smad6. Overexpression of FKBP12, which was reported to block the ligand-independent activation of BMP type I receptor A (BMPRIA), suppressed Smad signaling induced by FK506, but not that induced by BMP2. BMPRIA and FKBP12 bound to each other, and this binding was suppressed by FK506. These data suggest that FK506 promotes osteogenic differentiation by activating BMP receptors through interacting with FKBP12.  相似文献   

10.
The present study shows the in vitro effects of a novel immunosuppressive agent, FK506, in comparison with cyclosporin A (CsA). FK506 inhibited concanavalin A response and allo-mixed lymphocyte reaction of murine splenic lymphocytes in a dose-dependent manner, and at 40- to 200-fold lower concentrations than CsA. Allo-cytolytic T lymphocyte induction from murine thymocytes was also inhibited by FK506, whereas the ability of cytolytic T lymphocyte to lyse targets was not affected by the agent. Immunosuppressive effects of FK506 were further characterized by using antigen specific-proliferative T lymphocyte clones, BC.21 and KO.6. FK506 inhibited the proliferation of T cell clones stimulated with specific antigens in a dose-dependent manner, and at about 100-fold lower concentrations than CsA. However, cloned T cells, once activated, were scarcely affected by the agent; interleukin-2 (IL-2) driven proliferation of cloned T cells was not inhibited. On the other hand, it was found that FK506 inhibited both IL-2 secretion and IL-2 receptor expression of BC.21 after stimulation with the specific antigen. FK506 also inhibited the proliferation of BC.21 stimulated with phorbol 12-myristate 13-acetate plus calcium ionophore, indicating that it directly affected the signaling pathway downward from the perturbation of the Ti/T3 complex. Finally, it was suggested that FK506 and CsA synergistically inhibited the antigen-driven proliferation of cloned T cells. These results indicate that the novel immunosuppressive agent, FK506, affects T cell activation with mechanisms similar to those of CsA but at considerably lower concentrations.  相似文献   

11.
Mean field analysis of FKBP12 complexes with FK506 and rapamycin has been performed by using structures obtained from molecular docking simulations on a simple, yet robust molecular recognition energy landscape. When crystallographic water molecules are included in the simulations as an extension of the FKBP12 protein surface, there is an appreciable stability gap between the energy of the native FKBP12–FK506 complex and energies of conformations with the “native-like” binding mode. By contrast, the energy spectrum of the FKBP12–rapamycin complex is dense regardless of the presence of the water molecules. The stability gap in the FKBP12–FK506 system is determined by two critical water molecules from the effector region that participate in a network of specific hydrogen bond interactions. This interaction pattern protects the integrity and precision of the composite ligand-protein effector surface in the binary FKBP12–FK506 complex and is preserved in the crystal structure of the FKBP12–FK506–calcineurin ternary complex. These features of the binding energy landscapes provide useful insights into specific and nonspecific aspects of FK506 and rapamycin recognition. Proteins 28:313–324, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
13.
CCK increases the rate of net protein synthesis in rat pancreatic acini by activating initiation and elongation factors required for translation. The immunosuppressant FK506 inhibits the Ca2+-calmodulin-dependent phosphatase calcineurin in pancreatic acinar cells and blocks pancreatic growth induced by chronic CCK treatment. To test a requirement for calcineurin in the activation of the translational machinery stimulated by CCK, we evaluated the effects of FK506 on protein synthesis and on regulatory initiation and elongation factors in rat pancreatic acini in vitro. CCK acutely increased protein synthesis in acini from normal rats with a maximum increase at 100 pM CCK to 170 ± 11% of control. The immunosuppressant FK506 dose-dependently inhibited CCK-stimulated protein synthesis over the same concentration range that blocked calcineurin activity, as assessed by dephosphorylation of the calcineurin substrate calcium-regulated heat-stable protein of 24 kDa. Another immunosuppressant, cyclosporin A, inhibited protein synthesis, but its effects appeared more complex. FK506 also inhibited protein synthesis stimulated by bombesin and carbachol. FK506 did not significantly affect the activity of the initiation factor-2B, or the phosphorylation of the initiation factor-2, ribosomal protein protein S6, or the mRNA cap binding protein eukaryotic initiation factor (eIF) 4E. Instead, blockade of calcineurin with FK506 reduced the phosphorylation of the eIF4E binding protein, reduced the formation of the eIF4F complex, and increased the phosphorylation of eukaryotic elongation factor 2. From these results, we conclude that calcineurin activity is required for protein synthesis, and this action may be related to an effect on the formation of the mRNA cap binding complex and the elongation processes. exocrine pancreas; cholecystokinin; translation initiation factors; protein phosphatase 2B; immunosuppressants  相似文献   

14.
Calcineurin negatively regulates TLR-mediated activation pathways   总被引:2,自引:0,他引:2  
In innate immunity, microbial components stimulate macrophages to produce antimicrobial substances, cytokines, other proinflammatory mediators, and IFNs via TLRs, which trigger signaling pathways activating NF-kappaB, MAPKs, and IFN response factors. We show in this study that, in contrast to its activating role in T cells, in macrophages the protein phosphatase calcineurin negatively regulates NF-kappaB, MAPKs, and IFN response factor activation by inhibiting the TLR-mediated signaling pathways. Evidence for this novel role for calcineurin was provided by the findings that these signaling pathways are activated when calcineurin is inhibited either by the inhibitors cyclosporin A or FK506 or by small interfering RNA-targeting calcineurin, and that activation of these pathways by TLR ligands is inhibited by the overexpression of a constitutively active form of calcineurin. We further found that IkappaB-alpha degradation, MAPK activation, and TNF-alpha production by FK506 were reduced in macrophages from mice deficient in MyD88, Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF), TLR2, or TLR4, whereas macrophages from TLR3-deficient or TLR9 mutant mice showed the same responses to FK506 as those of wild-type cells. Biochemical studies indicate that calcineurin interacts with MyD88, TRIF, TLR2, and TLR4, but not with TLR3 or TLR9. Collectively, these results suggest that calcineurin negatively regulates TLR-mediated activation pathways in macrophages by inhibiting the adaptor proteins MyD88 and TRIF, and a subset of TLRs.  相似文献   

15.
Nur77 is reported to undergo translocation to mitochondria in response to apoptotic signaling in a variety of cancer cell lines. It was shown that on the mitochondrial membrane, Nur77 interacts with Bcl-2, leading to the conversion of this protein from a protector to a killer with subsequent release of cytochrome c to the cytosol. Here it is shown that in thymic lymphoma cells resistant to calcium-mediated apoptosis, cytochrome c release is abolished despite of Nur77 mitochondrial targeting. However, cytochrome c release and apoptosis can be restored by treatment with FK506. Hence, the molecular target regulation of the sensitivity of lymphoma cells to calcium signaling is associated with cytochrome c release and is FK506 sensitive. These results provide new insight into the role of FK506-sensitive factors as a critical link between calcium signaling and resistance of lymphoma cells to death.  相似文献   

16.
17.
Acute pancreatitis is a major health burden for which there are currently no targeted therapies. Premature activation of digestive proenzymes, or zymogens, within the pancreatic acinar cell is an early and critical event in this disease. A high-amplitude, sustained rise in acinar cell Ca(2+) is required for zymogen activation. We previously showed in a cholecystokinin-induced pancreatitis model that a potential target of this aberrant Ca(2+) signaling is the Ca(2+)-activated phosphatase calcineurin (Cn). However, in this study, we examined the role of Cn on both zymogen activation and injury, in the clinically relevant condition of neurogenic stimulation (by giving the acetylcholine analog carbachol) using three different Cn inhibitors or Cn-deficient acinar cells. In freshly isolated mouse acinar cells, pretreatment with FK506, calcineurin inhibitory peptide (CiP), or cyclosporine (CsA) blocked intra-acinar zymogen activation (n = 3; P < 0.05). The Cn inhibitors also reduced leakage of lactate dehydrogenase (LDH) by 79%, 62%, and 63%, respectively (n = 3; P < 0.05). Of the various Cn isoforms, the β-isoform of the catalytic A subunit (CnAβ) was strongly expressed in mouse acinar cells. For this reason, we obtained acinar cells from CnAβ-deficient mice (CnAβ-/-) and observed an 84% and 50% reduction in trypsin and chymotrypsin activation, respectively, compared with wild-type controls (n = 3; P < 0.05). LDH release in the CnAβ-deficient cells was reduced by 50% (n = 2; P < 0.05). The CnAβ-deficient cells were also protected against zymogen activation and cell injury induced by the cholecystokinin analog caerulein. Importantly, amylase secretion was generally not affected by either the Cn inhibitors or Cn deficiency. These data provide both pharmacological and genetic evidence that implicates Cn in intra-acinar zymogen activation and cell injury during pancreatitis.  相似文献   

18.
In the present paper we show that the immunosuppressant rapamycin inhibits the induction of apoptosis by didemnin B in human promyeloid HL-60 cells. The mechanism of this inhibition is investigated using FK506, which competes with rapamycin for binding to their common target FK506-binding protein (FKBP)12. The lack of competition for rapamycin-mediated inhibition of didemnin B-induced apoptosis by FK506 suggests that rapamycin inhibits apoptosis through some mechanism other than inhibition of p70 S6 kinase activation. The lack of inhibition of didemnin B-induced apoptosis by inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein (MAP) kinase kinase further supports the conclusion that rapamycin does not inhibit didemnin B-induced apoptosis through inhibition of the MAP kinase pathway. Furthermore, didemnin B-induced apoptosis is not inhibited by the inhibitors of cyclin-dependent kinase, roscovitine and olomoucine. This indicates that rapamycin does not act through inhibition of cyclin-dependent kinases. Together with the lack of competition for the effect of rapamycin by FK506, our data suggest the possible involvement of the FK506-binding protein, FKBP25, which is localized in the nucleus. This interpretation of our data gains support from the fact that didemnin B does not induce apoptosis in enucleated HL-60 cells, which supports the possible involvement of FKBP25 in the inhibition of apoptosis by rapamycin.  相似文献   

19.
Hormonal and environmental factors that control the growth, differentiation, and regression of the vasculature are of fundamental importance in tumorigenesis and in the choice of therapeutic strategies. To test the hypothesis that estradiol (E2) and basement membrane proteins would affect the survival of vascular endothelial cells (EC), immortalized human umbilical vein endothelial cells (ECV304) were examined for their response to the chemotherapeutic drugs taxol and etoposide. ECV cell apoptosis was inhibited by E2 (taxol only) or attachment to extracellular matrix (ECM) (taxol or etoposide). E2 increased ECV growth, while ECM binding resulted in growth arrest and differentiation. Apoptosis was associated with decreased levels of Bcl-2 and p21 proteins. E2 prevented down-regulation of p21 and Bcl-2 induced by taxol but did not prevent the down-regulation of p21 induced by etoposide, consistent with the failure of E2 to inhibit etoposide-induced cell death. However, ECM prevented p21 and Bcl-2 down-regulation induced by taxol or etoposide. Persistent activation of NFkappaB occurred after attachment of ECV cells to ECM, suggesting a role in survival or differentiation. IkappaBalpha levels were not affected by taxol but were reduced by etoposide treatment, while IkappaBbeta levels did not change with drug treatment. E2 did not alter the levels of IkappaBalpha or IkappaBbeta. Interestingly, levels of IkappaBalpha and IkappaBbeta declined in etoposide-treated ECV cells on ECM concomitant with the elevation of NFkappaB, suggesting that in these cells degradation of IkappaB may be responsible for NFkappaB activation. In agreement with these data, anti-sense NFkappaB treatment of ECV cells inhibited differentiation on ECM, but did not affect cell survival. In conclusion, culture of ECV cells on ECM or treatment with E2 inhibited apoptosis. NFkappaB activation by ECM was necessary for cellular differentiation, rather than inhibition, of apoptosis.  相似文献   

20.
Although the rotamase activity of the FK506 binding protein is inhibited by ligand binding, it is hypothesized that the ligand/protein complex itself may be responsible for the immunosuppressive effects of FK506. We have therefore examined the structure of the FK506 binding protein in the presence of an analog of FK506 (FK520) by a combination of fluorescence, CD, FTIR and calorimetry. While only small changes in the overall structure of the protein may be induced by ligand, a large change in thermal stability of the binding protein is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号