首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two native bacterial strains, FY1 and WZ2, that showed high chromium(VI)-reducing ability were respectively isolated from electroplating and tannery effluent–contaminated sites and identified as Bacillus and Arthrobacter. The objective of the present study was to evaluate their potential for future application in soil bioremediation. The results showed that both Bacillus sp. FY1 and Arthrobacter sp. WZ2 were tolerant to 1000 mg L?1 Cr(VI) and capable of reducing 78–85% and 75–82% of Cr(VI) (100–200 mg L?1) within 24 h, respectively. The Cr(VI) reduction rate decreased with increasing levels of Cr(VI) concentration (200–1000 mg L?1). The optimum pH, temperature, and inoculum concentration for Cr(VI) reduction were found to be between pH 7.0 and 8.0; 30 and 35°C; and 1 × 108 cells ml?1, respectively. Further evidence for the bioremediation potential of Bacillus sp. FY1 and Arthrobacter sp. WZ2 was provided by the high capacity to reduce 100, 200, and 500 mg kg?1 Cr(VI) in contaminated soil by 83–91%, 78–85%, and 71–78% within 7 days, respectively. These findings demonstrated the high potential of Bacillus sp. FY1 and Arthrobacter sp. WZ2 for application in future soil bioremediation.  相似文献   

3.
In the present investigation, five novel Cr(VI) reducing bacteria were isolated from tannery effluents and solid wastes and identified as Kosakonia cowanii MKPF2, Klebsiella pneumonia MKPF5, Acinetobacter gerneri MKPF7, Klebsiella variicola MKPF8 and Serratia marcescens MKPF12 by 16S rDNA gene sequence analysis. The maximum tolerance concentration of Cr(VI) as K2Cr2O7 of the bacterial isolates was varying up to 2000 mg/L. Among the investigated bacterial isolates, A. gerneri MKPF7 was best in terms of reduction rate. The optimum temperatures for growth and Cr(VI) reduction by the bacterial isolates were 35 and 40 °C, respectively except A. gerneri MKPF7 which grew and reduced Cr(VI) optimally at 40 °C. The optimum pH for growth and Cr(VI) reduction by K. cowanii MKPF2, A. gerneri MKPF7 and S. marcescens MKPF12 was 7.0 whereas the optimum pH for growth and Cr(VI) reduction by K. pneumoniae MKPF5 and K. variicola MKPF8 were 7.0, 8.0 and 6.0, 7.0, respectively. All the bacterial isolates showed maximum tolerance against Ni2+ and Zn2+ whereas minimum tolerance was observed against Hg2+ and Cd2+. The bacteria isolated in the present study thus can be used as eco-friendly biological expedients for the remediation and detoxification of Cr(VI) from the contaminated environments.  相似文献   

4.
Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiated from pristine and contaminated (high in uranium, nitrate; low pH) subsurface sediments at pH 7 and pH 4 to 5. Enumeration of Fe(III)-reducing bacteria yielded cell counts of up to 240 cells ml(-1) for the contaminated and background sediments at both pHs with a range of different carbon sources (glycerol, acetate, lactate, and glucose). In enrichments where nitrate contamination was removed from the sediment by washing, MPN counts of Fe(III)-reducing bacteria increased substantially. Sediments of lower pH typically yielded lower counts of Fe(III)-reducing bacteria in lactate- and acetate-amended enrichments, but higher counts were observed when glucose was used as an electron donor in acidic enrichments. Phylogenetic analysis of 16S rRNA gene sequences extracted from the highest positive MPN dilutions revealed that the predominant members of Fe(III)-reducing consortia from background sediments were closely related to members of the Geobacteraceae family, whereas a recently characterized Fe(III) reducer (Anaeromyxobacter sp.) and organisms not previously shown to reduce Fe(III) (Paenibacillus and Brevibacillus spp.) predominated in the Fe(III)-reducing consortia of contaminated sediments. Analysis of enrichment cultures by terminal restriction fragment length polymorphism (T-RFLP) strongly supported the cloning and sequencing results. Dominant members of the Fe(III)-reducing consortia were observed to be stable over several enrichment culture transfers by T-RFLP in conjunction with measurements of Fe(III) reduction activity and carbon substrate utilization. Enrichment cultures from contaminated sites were also shown to rapidly reduce millimolar amounts of U(VI) in comparison to killed controls. With DNA extracted directly from subsurface sediments, quantitative analysis of 16S rRNA gene sequences with MPN-PCR indicated that Geobacteraceae sequences were more abundant in pristine compared to contaminated environments,whereas Anaeromyxobacter sequences were more abundant in contaminated sediments. Thus, results from a combination of cultivation-based and cultivation-independent approaches indicate that the abundance/community composition of Fe(III)-reducing consortia in subsurface sediments is dependent upon geochemical parameters (pH, nitrate concentration) and that microorganisms capable of producing spores (gram positive) or spore-like bodies (Anaeromyxobacter) were representative of acidic subsurface environments.  相似文献   

5.
Deep subsurface sandstones in the area of Berlin (Germany) located 600 to 1060 m below the surface were examined for the presence of viable microorganisms. The in situ temperatures at the sampling sites ranged from 37 to 45 degrees C. Investigations focussed on sulfate-reducing bacteria able to grow on methanol and triethylene glycol, which are added as chemicals to facilitate the long-term underground storage of natural gas. Seven strains were isolated from porewater brines in the porous sandstone. Three of them were obtained with methanol (strains H1M, H3M, and B1M), three strains with triethylene glycol (strains H1T, B1T, and B2T) and one strain with a mixture of lactate, acetate and butyrate (strain H1-13). Due to phenotypic properties six isolates could be identified as members of the genus Desulfovibrio, and strain B2T as a Desulfotomaculum. The salt tolerance and temperature range for growth indicated that the isolates originated from the indigenous deep subsurface sandstones. They grew in mineral media reflecting the in situ ionic composition of the different brines, which contained 1.5 to 190 g NaCl x l(-1) and high calcium and magnesium concentrations. The Desulfovibrio strains grew at temperatures between 20 and 50 degrees C, while the Desulfotomaculum strain was thermophilic and grew between 30 and 65 degrees C. The strains utilized a broad spectrum of electron donors and acceptors. They grew with carbon compounds like lactate, pyruvate, formate, n-alcohols (C1-C5), glycerol, ethylene glycol, malate, succinate, and fumarate. Some strains even utilized glucose as electron donor and carbon source. All strains were able to use sulfate, sulfite and nitrate as electron acceptors. Additionally, three Desulfovibrio strains reduced manganese oxide, the Desulfotomaculum strain reduced manganese oxide, iron oxide, and elemental sulfur. The 16S rRNA analysis revealed that the isolates belong to three different species. The strains H1T, H3M and B1M could be identified as Desulfovibrio indonesiensis, and strain B2T as Desulfotomaculum geothermicum. The other Desulfovibrio strains (H1M, H1-13, and B1T) showed identical 16S rDNA sequences and similarities as low as 93% to their closest relative, Desulfovibrio aminophilusT. Therefore, these isolates were assigned to a new species, Desulfovibrio cavernae sp. nov., with strain H1M as the type strain.  相似文献   

6.
Five strains of lithotrophic, nitrite-oxidizing bacteria (AN1-AN5) were isolated from sediments of three soda lakes (Kunkur Steppe, Siberia; Crater Lake and Lake Nakuru, Kenya) and from a soda soil (Kunkur Steppe, Siberia) after enrichment at pH 10 with nitrite as sole electron source. Morphologically, the isolates resembled representatives of the genus Nitrobacter. However, they differed from recognized species of this genus by the presence of an additional S-layer in their cell wall and by their unique capacity to grow and oxidize nitrite under highly alkaline conditions. The influence of pH on growth of one of the strains (AN1) was investigated in detail by using nitrite-limited continuous cultivation. Under such conditions, strain AN1 was able to grow at a broad pH range from 6.5 to 10.2, with an optimum at 9.5. Cells grown at pH higher than 9 exhibited a clear shift in the optimal operation of the nitrite-oxidizing system towards the alkaline pH region with respect to both reaction rates and the affinity. Cells grown at neutral pH values behaved more like neutrophilic Nitrobacter species. These data demonstrated the remarkable potential of the new nitrite-oxidizing bacteria for adaptation to varying alkaline conditions. The 16S rRNA gene sequences of isolates AN1, AN2, and AN4 showed high similarity (≥ 99.8%) to each other, and to sequences of Nitrobacter strain R6 and of Nitrobacter winogradskyi. However, the DNA-DNA homology in hybridization studies was too low to consider these isolates as new strains. Therefore, the new isolates from the alkaline habitats are described as a new species of the genus Nitrobacter, N. alkalicus, on the basis of their substantial morphological, physiological, and genetic differences from the recognized neutrophilic representatives of this genus. Received: 3 April 1998 / Accepted: 2 July 1998  相似文献   

7.
Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sediments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and energy sources, but they are nutritionally versatile. Physiological and phylogenetic analyses based on 16S ribosomal DNA sequences suggest that strain M4-6 belongs to the genus Cycloclasticus and represents a new species, Cycloclasticus spirillensus sp. nov. Strain LC8 appears to represent a new genus and species, Lutibacterium anuloederans gen. nov., sp. nov., within the Sphingomonadaceae. However, when inoculated into sediment slurries with or without exogenous phenanthrene, only L. anuloederans appeared to sustain a significant phenanthrene uptake potential throughout a 35-day incubation. In addition, only L. anuloederans appeared to enhance phenanthrene degradation in heavily contaminated sediment from Little Mystic Cove, Boston Harbor, Boston, Mass.  相似文献   

8.
Phenotypic and genotypic analysis was carried out on four iron- and sulfur-oxidizing acidophilic bacteria (the “NO-37 group”) isolated from different parts of the world. 16S rRNA phylogeny showed that they are highly related to each other, but are less related to the type strain of Acidithiobacillus ferrooxidans. The NO-37 group isolates are obligate chemolithoautotrophs, facultative anaerobes, diazotrophic, and psychrotolerant. They are less tolerant of extremely low pH, and in contrast to At. ferrooxidans T, all of the NO-37 group isolates are motile. The GC contents of genomic DNA of the NO-37 group isolates were around 56 mol% and the DNA–DNA hybridization value between genomic DNA of isolate NO-37 and At. ferrooxidans T was 37%. It also appears that the bacteria of the NO-37 group have a different biochemical mechanism for oxidizing ferrous iron than At. ferrooxidans T; the gene coding for the archetypal rusticyanin (RusA) was not detected in any of the NO-37 group isolates, rather a gene coding for a homologous protein (RusB) was amplified from three of the four novel isolates. Isolates of the NO-37 group clearly belong to a species that is different to those already recognized in the genus Acidithiobacillus, for which the name Acidithiobacillus ferrivorans is proposed.  相似文献   

9.
A strictly anaerobic bacterium dechlorinating tetrachloroethene (perchloroethylene, PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (DCE) was isolated from activated sludge with pyruvate plus PCE as energy substrates. The organism, called Dehalospirillum multivorans, is a gram-negative spirillum that does not form spores. The G+C content of the DNA was 41.5 mol%. According to 16S rRNA gene sequence analysis, D. multivorans represents a new genus and a new species belonging to the epsilon subdivision of Proteobacteria. Quinones, cytochromes b and c, and corrinoids were extracted from the cells. D. multivorans grew in defined medium with PCE and H2 as sole energy sources and acetate as carbon source; the growth yield under these conditions was 1.4g of cell protein per mol chloride released. Alternatively to PCE, fumarate and nitrate could serve as electron acceptors; sulfate could not replace fumarate, nitrate, or PCE in this respect. In addition to H2, the organism utilized a variety of electron donors for dechlorination (pyruvate, lactate, ethanol, formate, glycerol). Upon growth on pyruvate plus PCE, the main fermentation products formed were acetatc, lactate, DCE, and H2. At optimal pH (7.3–7.6) and temperature (30°C), and in the presence of pyruvate (20mM) and PCE (160M), a dechlorination rate of about 50 nmol min-1 (mg cell protein)-1 and a doubling time of about 2.5h were obtained with growing cultures. The ability to reduce PCE to DCE appears to be constitutive under the experimental conditions applied since cultures growing in the absence of PCE for several generations immediately started dechlorination when transferred to a medium containing PCE. The organism may be useful for bioremediation of environments polluted with tetrachloroethene.Abbreviations PCE Perchloroethylene, tetrachloroethene - TCE Trichloroethene - DCE cis-1,2-Dichloroethene - CHC Chlorinated hydrocarbon  相似文献   

10.
A new mesophilic, irregular coccoid methanogen isolated from a river sediment is described. Hydrogen plus carbon dioxide or formate served as substrates for methanogenesis in a mineral salt medium. For growth acetate is strictly required. Elevated levels of sodium chloride were not required and were inhibitory at concentrations above 1.5% (w/v). The optimal growth temperature was at 45°C. The DNA base ratio was 48.6±1 mol% G+C. The polar lipid pattern and the polyamine content were similar to that found in several Methanoculleus species. The new isolate CB-1 was assigned as Methanoculleus oldenburgensis (DSM 6216).  相似文献   

11.
Abstract Spore-forming sulfate-reducing bacteria (SRB) were enriched selectively from various kinds of aerobic soils with fatty acids as the sole carbon and energy source. A Gram-negative motile rod-shaped bacterium, which produced gas vacuoles during sporulation was isolated. It degraded alcohols, aromatic and n-fatty acids (up to C18) except for propionate, completely to CO2. Sulfate, sulfite, thiosulfate or elemental sulfur served as electron acceptors. Because of its sensitivity to H2S, the isolate never produced more than 8 mM dissolved sulfide at pH 7.0. G + C-content of the DNA was 48.0 mol %. The isolated strain Pato is described as a new species Desulfotomaculum sapomandens .  相似文献   

12.
Two types of new anaerobic bacteria were isolated from anoxic freshwater sediments. They grew in mineral medium with oxalate as sole energy source and with acetate as main carbon source. Oxalate as well as oxamate (after deamination) were decarboxylated to formate with growth yields of 1.2–1.4 g dry cell matter per mol oxalate degraded. No other organic or inorganic substrates were used, and no electron acceptors were reduced. Strain WoOx3 was a Gramnegative, non-sporeforming, motile vibrioid rod with a guanine-plus-cytosine content of the DNA of 51.6 mol%. It resembled the previously described genus Oxalobacter, and is described as a new species, O. vibrioformis. Strain AltOx1 was a Gram-positive, spore-forming, motile rod with a DNA base ratio of 36.3 mol% guanine-plus-cytosine. This isolate is described as a new species of the genus Clostridium, C. oxalicum.  相似文献   

13.
Cellulolytic, strictly anaerobic spore-forming bacteria were isolated from chloroform treated rumen contents. They were different from previously described cellulolytic rumen clostridia in several characteristics. They formed subterminal rod-shaped spores approximately 0.7 m by 3.5 m. In broth cultures the growth rate was maximal at 39°C and after log growth extensive autolysis occurred. Fermentation products consisted of acetate, butyrate, hydrogen and ethanol. The GC content was 31%.  相似文献   

14.
A strictly anaerobic bacterium, strain B5T, was isolated from sediment of an abandoned coal mine in Taebaek, Republic of Korea. Cells of strain B5T were non-spore-forming, straight, Gram-positive rods. The optimum pH and temperature for growth were pH 7.0 and 30°C, respectively, while the strain was able to grow within pH and temperature ranges of 5.5–7.5 and 25–45°C, respectively. Growth of strain B5T was observed at NaCl concentrations of 0 to 6.0% (w/v) with an optimum at 3.0–4.0% (w/v). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and three unknown polar lipids. Strain B5T grew anaerobically by reducing nitrate, nitrite, ferric-citrate, ferric-nitrilotriacetate, elemental sulfur, thiosulfate, and anthraquinone-2-sulfonate in the presence of proteinaceous compounds, organic acids, and carbohydrates as electron donors. The isolate was not able to grow by fermentation. Strain B5T did not grow under aerobic or microaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B5T is most closely related to the genus Tepidibacillus (T. fermentans STGHT; 96.3%) and Vulcanibacillus (V. modesticaldus BRT; 94.6%). The genomic DNA G+C content (36.9 mol%) of strain B5T was higher than those of T. fermentans STGHT (34.8 mol%) and V. modesticaldus BRT (34.5 mol%). Based on its phenotypic, chemotaxonomic, and phylogenetic properties, we describe a new species of a novel genus Calculibacillus, represented by strain B5T (=KCTC 15397T =JCM 19989T), for which we propose the name Calculibacillus koreensis gen. nov., sp. nov.  相似文献   

15.
16.
A dissimilatory Fe(III)-reducing bacterium was isolated from mining-impacted lake sediments and designated strain CdA-1. The strain was isolated from a 4-month enrichment culture with acetate and Fe(III)-oxyhydroxide. Strain CdA-1 is a motile, obligately anaerobic rod, capable of coupling the oxidation of acetate and other organic acids to the reduction of ferric iron. Fe(III) reduction was not observed using methanol, ethanol, isopropanol, propionate, succinate, fumarate, H2, citrate, glucose, or phenol as potential electron donors. With acetate as an electron donor, strain CdA-1 also grew by reducing nitrate or fumarate. Growth was not observed with acetate as electron donor and O2, sulfoxyanions, nitrite, trimethylamine N-oxide, Mn(IV), As(V), or Se(VI) as potential terminal electron acceptors. Comparative 16 S rRNA gene sequence analyses show strain CdA-1 to be most closely related (93.6% sequence similarity) to Rhodocyclus tenuis. However, R. tenuis did not grow heterotrophically by Fe(III) reduction, nor did strain CdA-1 grow photrophically. We propose that strain CdA-1 represents a new genus and species, Ferribacterium limneticum. Strain CdA-1 represents the first dissimilatory Fe(III) reducer in the β subclass of Proteobacteria, as well as the first Fe(III) reducer isolated from mine wastes. Received: 14 July 1998 / Accepted: 14 December 1998  相似文献   

17.
Here, we report a type strain AST-10 representing a novel species Sulfurimonas hongkongensis within Epsilonproteobacteria, which is involved in marine sedimentary sulfur oxidation and denitrification. Strain AST-10T (= DSM 22096T = JCM 18418T) was isolated from the coastal sediment at the Kai Tak Approach Channel connected to Victoria Harbour in Hong Kong. It grew chemolithoautotrophically using thiosulfate, sulfide or hydrogen as the sole electron donor and nitrate as the electron acceptor under anoxic conditions. It was rod-shaped and grew at 15-35°C (optimum at 30°C), pH 6.5-8.5 (optimum at 7.0-7.5), and 10-60 g L-1 NaCl (optimum at 30 g L-1). Genome sequencing and annotation of strain AST-10T showed a 2,302,023 bp genome size, with 34.9% GC content, 2,290 protein-coding genes, and 42 RNA genes, including 3 rRNA genes.  相似文献   

18.
A total of 20 fungal cultures were isolated from the rumen of cattle fed a high fibre-containing diet. All of the isolates showed polycentric growth patterns and were identified as different strains of Orpinomyces and Anaeromyces. Enzyme assays of most of the isolates showed the highest carboxymethylcellulase (CMCase) and xylanase activities after 96 h of growth and highest avicelase activity after 120 h. Among all enzymes tested, xylanase activity was the highest, followed by CMCase and avicelase. The results of the in vitro fibre digestibility and rumen fermentation analyses revealed that the addition of fungal cultures significantly increased acetate, in vitro dry matter digestibility, partition factor values and microbial biomass synthesis levels. Overall, Orpinomyces spp. were found to be the better enzyme producers and fibre degraders than Anaeromyces spp.  相似文献   

19.
A red–pink, Gram-negative, rod-shaped, non-motile, non-spore-forming bacterium, designated strain DK6-37 was isolated from the permafrost region of Qilian Mountains in northwest of China. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that this isolate represents a novel member of the genus Hymenobacter, with low sequence similarities (<97 %) to recognized Hymenobacter species. Optimum growth was observed at 28 °C, pH 7.0 and 0 % NaCl. The strain was found to contain MK-7 as the predominant menaquinone. The polar lipids were identified as phosphatidylethanolanmine, two unknown aminophospholipids, one unknown aminolipid and three unknown polar lipids. The major fatty acids were identified as summed feature 3 (C16:1 ω7c/C16:1 ω6c as defined by MIDI), summed feature 4 (anteiso-C17:1 B/iso-C17:1 I), C16:1 ω5c, iso-C17:0 3-OH, iso-C15:0 and C18:0. The DNA G + C content was determined to be 67.4 mol %. On the basis of the polyphasic evidence presented, it is proposed that strain DK6-37 represents a novel species of the genus Hymenobacter, for which the name Hymenobacter qilianensis sp. nov. is proposed. The type strain is DK6-37T (= CGMCC 1.12720T = JCM 19763T).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号