首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transfer of non-esterified cholesterol to rat-liver microsomal fraction resulted in a considerable decrease in the activity of 5′-nucleotidase and in changes in the characteristics of the Arrhenius plots of the enzyme. The decrease in the activity of 5′-nucleotidase and the increase in the concentration of non-esterified cholesterol in the serum-treated preparations were serum-concentration-dependent and incubation-time-dependent. The enzyme in serum-treated preparations with high non-esterified cholesterol content showed Arrhenius plots with a constant activation energy between 37 and 19°C, whereas the enzyme in the non-treated microsomal fraction or the lipoprotein-deficient serum-treated preparations showed a break at about 28°C, with activation energies higher below and lower above the break. These changes in the temperature-induced kinetics are consistent with an increase in the concentration of non-esterified cholesterol in the plasma membrane vesicles of the serum-treated preparations. The Arrhenius plots of 5′-nucleotidase in liver microsomal fraction from rats fed cholesterol-supplemented diet showed constant activation energy between 37 and 19°C and had similar characteristics with the plots for 5′-nucleotidase in serum-treated preparations. Since the changes in the characteristics of Arrhenius plots of the enzyme in microsomal fraction from rats that had been denied food for 36 h were in the opposite direction to those produced by feeding cholesterol, these results are consistent with a lower concentration of non-esterified cholesterol in hepatic plasma membranes from fasted rats relative to that in plasma membranes from fed rats. The isolation of a plasma membrane preparation with negligible contamination of endoplasmic reticular membranes from rats fed the standard or cholesterol-supplemented diet and from fasted rats showed that the ratio of cholesterol to phospholipid has increased in the preparation from rats fed cholesterol and decreased in that from rats that had been denied food relative to the ratio in the preparation from rats fed the standard diet. The Arrhenius plots of 5′-nucleotidase in these preparations showed characteristics similar to the corresponding plots of the enzyme in the microsomal fraction from the rats in the three experimental conditions.  相似文献   

2.
Chinese hamster cells in suspension were exposed to 20 kHz ultrasound (US) at 54 W/cm2 and various temperatures between 2 and 44 °C. Activation energies were 2.6 and 24 kcal/mole below and above 35 °C, respectively. Procaine, a local anaesthetic drug known to increase membrane fluidity, enhanced cellular inactivation by US above 41 °C, increasing the activation energy to 62 kcal/mole. The inactivation of the bacterium Salmonella typhimurium by US was also dependent on the exposure temperature, with an activation energy of 2.9 kcal/mole between 2 and 44 °C. These data are most simply explained by the hypothesis that membranes are a major target for cellular inactivation by US and that the fluidity of the membranes is important in this respect.  相似文献   

3.
We have studied the electrical conductivity of NaDNA solutions under “saltfree” conditions at temperatures well below the melting point of DNA, using radio-frequency dielectric and noise measurements. A conductivity discontinuity is observed at a temperature well below that at which the usual denaturation processes and trans conformation may commence. The radio-frequency permittivity also exhibits a discontinuity at the same temperature. For the premelting phase, the conductivity versus temperature curves consist of two linear regions with a change in slope occurring at 23°C. This effect is related to the behavior of the ionic sheath covering the DNA macromolecule. The activation energy of the alternative current conductivity as well as that the equivalent noise conductivity results as 3.11 kcal/mole below and 4.08 kcal/mole.  相似文献   

4.
The cholesterol content of rat liver plasma membranes was manipulated using either cholesterol-free or cholesterol-enriched liposomes. Removal of cholesterol from the membranes led to a marked increase in 5'-nucleotidase activity. However, increase in cholesterol content failed to exert any significant effect on 5'-nucleotidase activity. Arrhenius plots of the activity of the native enzyme exhibited a break at around 28 degrees C with the activation energy of the reaction less above this temperature than below. In cholesterol-depleted membranes a single break at around 26 degrees C was observed with activation energies greater above this temperature than below it. In cholesterol-enriched membranes Arrhenius plots were linear over the range examined. It is suggested that the lipid environment of the external half of the bilayer only influences 5'-nucleotidase activity in these membranes and that cholesterol exerts controlling effects on both the activity and conformation of the enzyme in native membranes.  相似文献   

5.
Taka-Aki Ono  Norio Murata 《BBA》1979,545(1):69-76
The photosynthetic electron transport and phosphorylation reactions were measured in the room temperature region in the thylakoid membranes prepared from the blue-green alga, Anacystis nidulans. The Arrhenius plot of the Hill reaction with 2,6-dichlorophenolindophenol showed a distinct break of straight lines at 21°C in the membranes from cells grown at 38°C, and at 12°C in those from cells grown at 28°C. The Arrhenius plot of the Hill reaction with ferricyanide showed a break at 13°C in the membranes from cells grown at 38°C, and at 7°C in those from cells grown at 28°C. On the other hand, the Arrhenius plot of the System I reaction with methylviologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system was composed of a straight line in the membranes from cells grown at 28°C as well as at 38°C. The Arrhenius plot of the System II reaction measured by the ferricyanide reduction mediated by silicotungstate in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea also showed a break at 11°C in the membranes from cells grown at 38°C.The Arrhenius plot of the phosphorylation mediated by N-methylphenazonium methylsulfate showed a break at 21°C in the membranes from cells grown at 38°C and at 12°C in those from cells grown at 28°C. The Arrhenius plot of the phosphorylation mediated by the System I reaction showed a break at 24°C in the membranes from cells grown at 38°C.The characteristic features in the Arrhenius plots of the photosynthetic electron transport and phosphorylation reactions are discussed in terms of the transition of physical phase of the thylakoid membrane lipids.  相似文献   

6.
Phenobarbital-stimulated microsomal membranes of rabbit liver, containing the cytochrome P450- cytochrome P450 reductase hydroxylating enzyme system in high concentration, have been studied with a version of the spin label technique which uses nitroxide radicals as enzyme substrates. The reduction kinetics of a phosphate ester of tetramethylpiperidine nitroxide (TEMPO-phosphate) and of stearic acid nitroxide by the cytochrome P450 reductase has been studied as a function of the temperature. The Arrhenius plot of the reduction rate constants reveals a striking difference in the behaviour of the water-soluble TEMPO-phosphate label and the lipid-soluble fatty acid label: The activation energy of the fatty acid reduction decreases abruptly at about 32°C from a value of 30.8 kcal/mole to a value of 8.7 kcal/mole, whereas no such break is observed in the Arrhenius plot of the TEMPO-phosphate reduction which yields a value of the activation energy of ΔW = 13.8 kcal/mole in the whole temperature range investigated. Our results clearly indicate the existence of a mosaic-like structure of the membrane with the whole enzyme system being enclosed by a rather rigid phospholipid halo which is in a quasicrystalline structure below 32 °C and undergoes a crystalline-liquid crystalline phase transition at 32 °C, while the bulk lipid of the membrane is in a rather fluid state as reflected by the measured high diffusion coefficient of Ddiff = 11.0·10?8cm2/s at 30 °C and low activation energy of diffusion of ΔW = 3.85 kcal/mole of a fatty acid spin label incorporated in the membrane.  相似文献   

7.
Brief treatment of rat liver plasma membranes with phospholipase C of Clostridium welchii increased both the ratio of saturated to unsaturated fatty acids and the ratio of cholesterol to phospholipids. Using 5-doxylstearic acid spin probes two breaks at 29 and 19.6 °C could be observed in the order parameter, SA, vs temperature curve for untreated membranes. Upon phospholipase C digestion the lower phase transition temperature was shifted to 23 °C, while the higher phase transition temperature could not be detected up to 40 °C. The order parameter, SA, was consistently higher at all temperatures in the phospholipase C-treated membranes. As phospholipase C is known to attack the outer lamella, these results can be interpreted as indicating an increase in ordering (i.e., decrease in fluidity) of the outer membrane lamella. On the other hand, an increase in basal activity of adenylate cyclase of the treated membranes was observed with an apparent reduction of the activation energies both below and above the break (at 20 °C) in the Arrhenius plot of enzyme activity. Phospholipase C treatment did not affect the temperature of the break in Arrhenius kinetics of the enzyme. The results are discussed in terms of the role of the ordering state of membrane lipids in adenylate cyclase activity.  相似文献   

8.
The isomerization and racemization of menthol isomers have been investigated with copper chromite and Raney nickel catalyst or sodium mentholates. The equilibrium concentration has been found to correspond to 55~56% of menthol with the catalytic isomerization, whereas to 74~75% of menthol with sodium mentholates. From these data, the free energy difference between equatorial and axial group in menthols is calculated to be about 0.5~0.6 Kcal./mole for hydroxyl and 1.4~1.5 Kcal./mole for methyl at 200°C.  相似文献   

9.
F E Evans  R A Levine 《Biopolymers》1987,26(7):1035-1046
The conformation of the sugar moiety of 8-(N-fluoren-2-ylamino)-2′-deoxyguanosine in solution has been examined as a function of temperature by 1H-nmr spectroscopy. Analysis of coupling constants shows that lowering the temperature to ?50°C in methanol shifts the conformational equilibrium of the sugar ring resulting in a C2′-endo conformation at a mole fraction of 0.97. The computed phase angle of pseudorotation and amplitude of pucker are 154° and 36°, respectively, with very little discrepancy between the five calculated coupling constants and coupling constants extrapolated from the temperature profiles. A computer program has been written enabling a three-state best-fit analysis. The three-state analysis indicates an equilibrium between C2′-endo, C3′-endo, and 04′-endo conformations. In aqueous solution, the computed mole fraction of the 04′-endo form is 0.18 at 30°C. The conformation associated with the sugar ring and the C4′? C5′ bond is compared to that of 2′-deoxyguanosine.  相似文献   

10.
The temperature dependence of drug monooxygenation in phenobarbital-induced rat liver microsomes has been investigated. With 7-ethoxycoumarin as a substrate the activity of the microsomes could be measured down to 0°C by the increase in fluorescence of the dealkylated reaction product 7-hydroxycoumarin (umbelliferone).Arrhenius plots of the activities at various temperatures between 0°C and 45°C showed a break in the activation energy around 20°C.Addition of deoxycholate or high concentrations of glycerol, known to solubilize membrane-bound enzymes, abolished the break of the activation energy. Cholesterol, incorporated into the microsomal membrane in amounts equimolar to the microsomal phospholipid content led to a decrease of the activation energy at low temperatures and to an increase at higher temperatures, resulting in a loss of the break.The activity of microsomal NADPH-cytochrome c reductase with the water-soluble electron acceptor dichlorophenolindophenol showed no discontinuity in the Arrhenius plot. In addition the cumene hydroperoxide-mediated and cytochrome P-450-dependent O-dealkylation of 7-ethoxycoumarin proceeded without a break in the activation energy.It is concluded that phospholipid phase transitions affect the electron transfer from the reductase to cytochrome P-450.  相似文献   

11.
Summary The temperature and pH dependence of water exchange has been studied on isolated erythrocytes suspended in isotonic buffered solutions. At pH 7.4 a break in the Arrhenius plot of water exchange time at around 26°C was found. The mean value of the apparent activation energy of the water exchange time at temperatures higher than that of the discontinuity was 5.7 kcal/mole (±0.4); at lower temperatures the values of the apparent activation energy were below 1.4 kcal/mole. The pH dependence of water exchange time of isolated erythrocytes revealed a marked increase of the water exchange time values in the acid range of pH; a much smaller variation of the same parameter occurs between pH 7.0 and 8.0. These finding could be correlated with other processes involving erythrocyte membranes that showed similar pH and temperature dependence and were considered to indicate state transitions in the membranes. It is suggested that the temperature and pH effects on water diffusion indicate that conformational changes and cooperative effects are implicated in the mechanism of this transport process.Institute for Isotopic and Molecular Technology.  相似文献   

12.
As judged by betacyanin efflux, beet root tissue differs in stability toward O2 at low and high temperatures (45–60°C and 60–100°C respectively). The effect of temperature itself can he divided into a high activation energy (93 Kcal mol?1) process in the lower temperature range and a low activation energy process (19 Kcal mor?1) in the higher range (> 60°C). From these data it is suggested that initially, elevating temperatures bring about reversible conformational changes in the membrane. With continuing increase in temperature in the presence of O2, membrane chemical groups susceptible to oxidation are exposed and, upon oxidation, render conformational changes irreversible.  相似文献   

13.
Intracellular ribonuclease from the ciliate Tetrahymena pyriformis GL was purified 10-fold. After preheating for 20 minutes at 100°C of the ribonuclease preparation 80% of its activity was lost. Preheating under the same conditions, however, in the presence of RNA, did not affect the enzyme activity. Between 0°C and 41°C the apparent activation energy was 15,600 cal per deg. per mole.  相似文献   

14.
The microviscosity of the lipid phase of bovine serum high density lipoprotein was determined by fluorescence polarization measurements on a lipophilic probe (1,6-diphenyl-1,3,5-hexatriene) dissolved in the lipoprotein. At 25°C the average microviscosity was 6.1 ± 0.5 poise, and the activation energy calculated from a plot of log η versus 1T was 13±3Kcal/mole. A constant slope for the Arrhenius plot from 0 to 46°C indicated no apparent phase transitions in this temperature range.Comparison of the present results with reported microviscosity values for rat lymphocyte membranes and liposomes [Shinitzky and Inbar (1974) J. Mol. Biol. 85, 603] indicates a more rigid environment of the probe in the high density lipoprotein system fluidity of the lipid appears to be considerably decreased in the lipoprotein relative to organic solvent or oil solutions of lipids, probably as a result of the anisotropic environment of the probe, high total cholesterol, and presence of protein in these particles.  相似文献   

15.
Momany FA  Schnupf U 《Biopolymers》2012,97(7):568-576
Density functional (DFT) conformational in vacuo studies of cellobiose have shown that ?H‐anti conformations are low in energy relative to the syn forms, while the ψH‐anti forms are higher in energy. Further, as the cellulosic fragments became larger than a disaccharide and new hydrogen bonding interactions between multiple residues become available, stable low energy ?H‐anti, and ψH‐anti cellulosic structures became possible. To test the stability of cyclic anti‐conformations, a number of β‐linked five‐ and six‐residue molecules were created and then energy optimized in solvent (water, n‐heptane) using the implicit solvation method COSMO at the B3LYP level of theory. The created symmetric cyclic structures were without distortion. Upon optimization some cyclic conformations were found to be of low energy when compared with linear five‐ and six‐residue chains, after correcting the energy for the exclusion of a water molecule upon cyclization. It was also obvious from the hydrogen bonding network formed above and below the plane of the cyclic structure that these structures could exhibit strong synergistic tendencies. The conformational energy preferences for clockwise “c” and counter‐clockwise “r” hydroxyl groups and preference for the hydroxymethyl rotamers is described. Because these structures contain energetically unfavorable flipped conformations in water, that is, dihedral angles of ~180°/0° or ~0°/180° in ?HH, it is clear that the synthesis of these compounds will be challenging. © 2012 Wiley Periodicals, Inc. Biopolymers 97:568–576, 2012.  相似文献   

16.
NADPH-cytochrome c reductase has been isolated from a top-fermenting ale yeast, Saccharomyces cerevisiae (Narragansett strain), after ca. a 240-fold purification over the initial extract of an acetone powder, with a final specific activity (at pH 7.6, 30 °C) of ca. 150 μmol cytochrome c reduced min?1mg?1 protein. The preparation appears to be homogeneous by the criteria of: sedimentation velocity; electrophoresis on cellulose acetate in buffers above neutrality; and by polyacrylamide gel electrophoresis. Although the reductase appeared to partially separate into species “A” and “B” on DEAE-cellulose at pH 8.8, the two species have proven to be indistinguishable electrophoretically (above pH 8) and by sedimentation. By sedimentation equilibrium at 20 °C, a molecular weight of ca. 6.8 (± 0.4) × 104 was obtained with use of a V?20 ° = 0.741 calculated from its amino acid composition. After disruption in 4 m guanidinium chloride- 10 mm dithioerythritol- 1 mm EDTA, pH 6.4 at 20 °C, an M?r of 3.4 (± 0.1) × 104 resulted, which points to a subunit structure of two polypeptide chains per mole. Confirmatory evidence of the two-subunit structure with similar, if not identical, polypeptide chains was obtained by polyacrylamide gel electrophoresis in dodecyl-sulfate, after disruption in 4 m urea and 2% sodium dodecyl sulfate, and yielded a subunit molecular weight of ca. 4 × 104. Sulfhydryl group titration with 4,4′-dithiodipyridine under acidic conditions revealed one sulfhydryl group per monomer, which apparently is necessary for the catalytic reduction of cytochrome c. NADPH, as well as FAD, protects this-SH group from reaction with 5,5′-dithiobis (2-nitrobenzoate). The visible absorption spectrum of the oxidized enzyme (as prepared) has absorption maxima at 383 and 455 nm, typical of a flavoprotein. Flavin analysis (after dissociation by thermal denaturation of the “A” protein) conducted fluorometrically, revealed the presence of 2.0 mol of FAD per 70,000 g, in confirmation of the deduced subunit structure. The identity of the FAD dissociated from either “A” or “B” protein was confirmed by recombination with apo-d-amino acid oxidase and by thin-layer chromatography. A kinetic approach was used to estimate the dissociation constant for either FAD or FMN (which also yields a catalytically active enzyme) to the apoprotein reductase at 30 °C and pH 7.6 (0.05 m phosphate) and yielded values of 4.7 × 10?8m for FAD and 4.4 × 10?8m for FMN.  相似文献   

17.
M.L. Keech  E.D. Wills 《Life sciences》1981,29(13):1333-1339
A study has been made of the effect of hydrocortisone, filipin, retinol and synthetic retinoids alone and in combination with hyperthermia on lysosomal enzyme activation in Hela cells using quantitative cytochemical methods. Lysosomal enzyme activity has been related to cell survival.Hydrocortisone, filipin and retinol caused an increase in lysosomal acid phosphatase activity when cells were incubated at 37°C. Incubation of cells at 43°C for 60 min caused a marked increase in lysosomal enzyme activity and addition of hydrocortisone, filipin or retinol strongly enhanced the enzyme activation.It is concluded that the effects of hyperthermia may be potentiated by compounds which interact with membranes and increased cell death may result from labilisation of the lysosomal membranes.The synthetic retinoids, Ro 10-9359 and Ro 10-1670 were much less effective than retinol at 37° or at 43°. Incubation of cells with retinol at 37° caused a reduction in cell survival and this was further reduced if the cells were incubated at 43°. The synthetic retinoids were less effective.  相似文献   

18.
19.
The dependence of membrane dynamics on the mole ratio of lecithin to sphingomyelin (L/S) was examined by the fluorescence depolarization of the fluidity probe DPH in membranes isolated from sheep and human erythrocytes. In these membranes L/S is the main variable of lipid composition (0.02 and 1.7, respectively). The sheep erythrocyte membrane, which is rich in sphingomyelin, displays a higher lipid microviscosity than the human erythrocyte membrane in addition to a broad gel/liquid-crystal phase transition in the range of 26–35°C. Single-walled lipid vesicles of high sphingomyelin content, when studied by the same technique, exhibited dynamic characteristics similar to those found in the sheep erythrocyte membrane. Both the apparent microviscosity and the transition temperature decreased with increasing the L/S. Membrane proteins of human and sheep erythrocytes were fluorescently labeled with the sulfhydryl reagent N-dansylaziridine and the emission spectrum was recorded as a function of temperature. In the human erythrocyte membranes a gradual increase in the ratio of emission maxima at 520 and 490 nm was observed between 6 and 40°C. At this temperature range the ratio of the above emission maxima in sheep erythrocyte membranes displayed a break between 20 and 28°C, which partially overlapped the phase transition observed for the lipid core. The effect of the lipid phase transition on membrane proteins for the lipid core. The effect of the lipid phase transition on membrane proteins was further assessed by comparing the activity of the membrane bound phospholipase A2 in the intact and detergent-solubilized sheep erythrocyte membranes. Below 31°C the lipids suppress the enzyme activity by about 90%, whereas above this temperature this suppression is progressively abolished.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号