首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to describe the prevalence and longitudinal distribution of Escherichia coli O157 in feedlot cattle and the feedlot environment. Pen floors, water tanks, other cattle in the feedlot, feed, and bird feces were sampled for 2 weeks prior to entry of the study cattle. Twelve pens of study cattle were sampled twice weekly. At each sample time cattle feces, water from tanks in each pen, bunk feed, feed components, bird feces, and houseflies were collected. Bunk feed samples were collected before and after cattle had access to the feed. Overall, 28% of cattle fecal samples, 3.9% of bird fecal samples, 25% of water samples, 3.4% of housefly samples, 1.25% of bunk feed before calf access, and 3.25% of bunk feed samples after cattle had access to the feed were positive for E. coli O157. Genetic analysis of E. coli O157 isolates was done using pulsed-field gel electrophoresis (PFGE). PFGE types identified in sampling of the feedlot prior to calf entry were different than the majority of types identified following calf entry. A single strain type predominated in the samples collected after entry of the cattle. It was first identified 5 days after entry of the first pen of cattle and was subsequently identified in all pens. Data support that the incoming cattle introduced a new strain that became the predominant strain in the feedlot.  相似文献   

2.
The objective of this study was to investigate coliform counts in feedlot cattle water and feed rations and their associations with management, climate, fecal material, and water Escherichia coli O157 using a cross-sectional study design. Coliform counts were performed on feed samples from 671 pens on 70 feedlots and on water samples from 702 pens on 72 feedlots in four U.S. states collected between May and August 2001. Management and climate factors were obtained by survey and observation. Month of sampling (higher in May and June), presence of corn silage in the ration (negative association), temperature of the feed 1 in. (ca. 2.5 cm) below the surface at the time of sampling (negative association), and wind velocity at the time of sampling (positive association) were significantly associated with log10 coliform levels in feed. Month of sampling (lower in May versus June July and August), water pH (negative association), and water total solids (positive association) were significantly associated with log10 water coliform levels. Coliform counts in feed and water were not associated with prevalence of E. coli O157 in cattle feces or water. Management risk factors must be interpreted with caution but the results reported here do not support the use of coliform counts as a marker for E. coli O157 contamination of feed or water.  相似文献   

3.
Identification of the sources and methods of transmission of Escherichia coli O157:H7 in feedlot cattle may facilitate the development of on-farm control measures for this important food-borne pathogen. The prevalence of E. coli O157:H7 in fecal samples of commercial feedlot cattle in 20 feedlot pens between April and September 2000 was determined throughout the finishing feeding period prior to slaughter. Using immunomagnetic separation, E. coli O157:H7 was isolated from 636 of 4,790 (13%) fecal samples in this study, with highest prevalence earliest in the feeding period. No differences were observed in the fecal or water trough sediment prevalence values of E. coli O157:H7 in 10 pens supplied with chlorinated drinking water supplies compared with nonchlorinated water pens. Pulsed-field gel electrophoresis of XbaI-digested bacterial DNA of the 230 isolates obtained from eight of the pens revealed 56 unique restriction endonuclease digestion patterns (REDPs), although nearly 60% of the isolates belonged to a group of four closely related genetic subtypes that were present in each of the pens and throughout the sampling period. The other REDPs were typically transiently detected, often in single pens and on single sample dates, and in many cases were also closely related to the four predominant REDPs. The persistence and predominance of a few REDPs observed over the entire feeding period on this livestock operation highlight the importance of the farm environment, and not necessarily the incoming cattle, as a potential source or reservoir of E. coli O157:H7 on farms.  相似文献   

4.
Feedlot cattle were observed for fecal excretion of and rectoanal junction (RAJ) colonization with Escherichia coli O157:H7 to identify potential “supershedders.” RAJ colonization and fecal excretion prevalences were correlated, and E. coli O157:H7 prevalences and counts were significantly greater for RAJ samples. Based on a comparison of RAJ and fecal ratios of E. coli O157:H7/E. coli counts, the RAJ appears to be preferentially colonized by the O157:H7 serotype. Five supershedders were identified based on persistent colonization with high concentrations of E. coli O157:H7. Cattle copenned with supershedders had significantly greater mean pen E. coli O157:H7 RAJ and fecal prevalences than noncopenned cattle. Cumulative fecal E. coli O157:H7 excretion was also significantly higher for pens housing a supershedder. E. coli O157:H7/E. coli count ratios were higher for supershedders than for other cattle, indicating greater proportional colonization. Pulsed-field gel electrophoresis analysis demonstrated that isolates from supershedders and copenned cattle were highly related. Cattle that remained negative for E. coli O157:H7 throughout sampling were five times more likely to have been in a pen that did not house a supershedder. The data from this study support an association between levels of fecal excretion of E. coli O157:H7 and RAJ colonization in pens of feedlot cattle and suggest that the presence of supershedders influences group-level excretion parameters. An improved understanding of individual and population transmission dynamics of E. coli O157:H7 can be used to develop preslaughter- and slaughter-level interventions that reduce contamination of the food chain.  相似文献   

5.
The effects of the β-agonist ractopamine, recently approved for use in feedlot cattle to improve carcass quality and performance, on fecal shedding Escherichia coli O157:H7 and Salmonella in feedlot cattle was examined. In the first study, 20 feedlot steers and heifers were randomly assigned to receive ractopamine or no ractopamine (control) by way of oral bolus for 28 days. Fecal samples were collected daily, and shedding of E. coli O157:H7 determined. When examined during the entire 28-day experimental period, ractopamine decreased (P = 0.0006) the percentage of cattle shedding E. coli O157:H7 (58% vs. 42% for control and ractopamine treatments, respectively). A second study was conducted in a commercial feedlot facility in the southwestern United States. Eighteen pens of cross-bred beef heifers (approximately 100 head/pen and 9 pens/treatment) were randomly assigned to receive either 0 (control) or 200 mg ractopamine/head·d–1. Fresh fecal samples (30/pen) were collected off the pen floor before ractopamine supplementation and again after approximately 28 days of ractopamine supplementation (within a few days of slaughter); the samples were cultured for E. coli O157:H7 and Salmonella. The percentage of animals shedding E. coli O157:H7 was decreased when data were pooled across replicates (P = 0.05) in ractopamine-treated cattle compared with controls. The percentage of animals shedding Salmonella tended to be higher (P = 0.08) with the ractopamine treatment when data were pooled across replicates. Although further research is required to confirm these results, the potential food safety implications of this research are intriguing. Mention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the United States Drug Administration and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

6.
The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination.  相似文献   

7.
We compared fecal samples with samples collected with rectoanal mucosa swabs (RAMS) to determine the prevalence of Escherichia coli O157 in feedlot cattle (n = 747). Escherichia coli O157 was detected in 9.5% of samples collected with RAMS and 4.7% of samples tested by fecal culture. Pulsed-field gel electrophoresis analysis of isolates suggested that the strains colonizing the rectoanal junction were the same as those from the feces. Mucosal swab sampling was more sensitive than fecal sampling for determining the prevalence of E.coli O157 in feedlot cattle.  相似文献   

8.
A study of Escherichia coli O157:H7 transmission and shedding was conducted with bull calves housed in individual pens within a confined environment. For comparative purposes, the numbers and duration of E. coli O157:H7 shedding in naturally infected calves were monitored after a single purchased calf (calf 156) tested positive prior to inoculation. During the next 8 days, the calves in adjacent pens and a pen directly across a walkway from calf 156 began to shed this serotype O157:H7 strain. Five of the eight calves in this room shed this O157:H7 strain at some time during the following 8 weeks. The numbers of E. coli O157:H7 isolates shed in these calves varied from 60 to 105 CFU/g of feces, and the duration of shedding ranged from 17 to >31 days. The genomic DNAs from isolates recovered from these calves were indistinguishable when compared by using XbaI digestion and pulsed-field gel electrophoresis. Inoculation of calves with 1 liter of water containing ca. 103 to 104 CFU of E. coli O157:H7/ml resulted in shedding in 10 of 12 calves (trial 1, 4 of 4 calves; trial 2, 6 of 8 calves). The inoculated calves shed the inoculation strain (FRIK 1275) as early as 24 h after administration. The duration of shedding varied from 18 to >43 days at levels from 102 to 106 CFU/g of feces. The numbers of doses necessary to initiate shedding varied among calves, and two calves in trial 2 never shed FRIK 1275 after four doses (ca. 106 CFU per dose). Results from this study confirm previous reports of animal-to-animal and waterborne dissemination of E. coli O157:H7 and highlight the need for an effective water treatment to reduce the spread of this pathogen in cattle.  相似文献   

9.
Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence.  相似文献   

10.
Genetic diversity, isolation frequency, and persistence were determined for Escherichia coli O157 strains from range cattle production environments. Over the 11-month study, analysis of 9,122 cattle fecal samples, 4,083 water source samples, and 521 wildlife fecal samples resulted in 263 isolates from 107 samples presumptively considered E. coli O157 as determined by culture and latex agglutination. Most isolates (90.1%) were confirmed to be E. coli O157 by PCR detection of intimin and Shiga toxin genes. Pulsed-field gel electrophoresis (PFGE) of XbaI-digested preparations revealed 79 unique patterns (XbaI-PFGE subtypes) from 235 typeable isolates confirmed to be E. coli O157. By analyzing up to three isolates per positive sample, we detected an average of 1.80 XbaI-PFGE subtypes per sample. Most XbaI-PFGE subtypes (54 subtypes) were identified only once, yet the seven most frequently isolated subtypes represented over one-half of the E. coli O157 isolates (124 of 235 isolates). Recurring XbaI-PFGE subtypes were recovered from samples on up to 10 sampling occasions and up to 10 months apart. Seven XbaI-PFGE subtypes were isolated from both cattle feces and water sources, and one of these also was isolated from the feces of a wild opossum (Didelphis sp.). The number of XbaI-PFGE subtypes, the variable frequency and persistence of subtypes, and the presence of identical subtypes in cattle feces, free-flowing water sources, and wildlife feces indicate that the complex molecular epidemiology of E. coli O157 previously described for confined cattle operations is also evident in extensively managed range cattle environments.  相似文献   

11.
The prevalence of Campylobacter jejuni in commercial feedlot cattle was monitored throughout the feeding period by repeated bacteriologic culture of feces. Fecal pats (n = 10) in 20 feedlot pens were sampled at 2-weeks interval beginning at entry into the feedlot and continuing until slaughter. The least-squares mean C. jejuni prevalence increased from 1.6% at the first sampling to 61.3% at the final sampling just prior to slaughter. Diverse C. jejuni pulsed-field gel electrophoresis macrorestriction profiles (MRP) were identified among the cattle isolates, but five prevalent MRP and minor variants accounted for >80% of all typed isolates. Chlorination of the water supplied to the water troughs of half of the pens did not affect C. jejuni prevalence in the cattle. Overall, the least-squares mean C. jejuni prevalences were 45.6 and 43.6% in chlorinated and nonchlorinated feedlot pens, respectively. The results of this study demonstrate apparent transmission of C. jejuni among feedlot cattle during the feeding period, unaffected by water chlorination, resulting in a high prevalence of C. jejuni excretion by cattle approaching slaughter.  相似文献   

12.
Controlling the prevalence of Escherichia coli O157 in cattle at the pre-harvest level is critical to reduce outbreaks of this pathogen in humans. Multilayers of factors including the environmental and bacterial factors modulate the colonization and persistence of E. coli O157 in cattle that serve as a reservoir of this pathogen. Here, we report animal factors contributing to the prevalence of E. coli O157 in cattle. We observe the lowest number of E. coli O157 in Brahman breed when compared with other crosses in an Angus-Brahman multibreed herd, and bulls excrete more E. coli O157 than steers in the pens where cattle were housed together. The presence of super-shedders, cattle excreting >105 CFU/rectal anal swab, increases the concentration of E. coli O157 in the pens; thereby super-shedders enhance transmission of this pathogen among cattle. Molecular subtyping analysis reveal only one subtype of E. coli O157 in the multibreed herd, indicating the variance in the levels of E. coli O157 in cattle is influenced by animal factors. Furthermore, strain tracking after relocation of the cattle to a commercial feedlot reveals farm-to-farm transmission of E. coli O157, likely via super-shedders. Our results reveal high risk factors in the prevalence of E. coli O157 in cattle whereby animal genetic and physiological factors influence whether this pathogen can persist in cattle at high concentration, providing insights to intervene this pathogen at the pre-harvest level.  相似文献   

13.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

14.
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥104 CFU · g−1 of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <104 CFU · g−1 of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.  相似文献   

15.
Comparisons of enrichment methods (with or without antibiotics and with or without a preenrichment step) using gram-negative (GN) broth or tryptic soy broth (TSB) were conducted with feeds inoculated with Escherichia coli O157:H7. TSB was more sensitive than GN broth, and TSB with a preenrichment step followed by TSB with antibiotics was more sensitive than plain TSB enrichment, in detecting E. coli O157 in inoculated feeds. Feed samples were collected from feed bunks from 54 feedlots to determine the prevalence of E. coli O157 in cattle feeds. TSB preenrichment followed by TSB with antibiotics and the standard GN broth enrichment were used for each feed sample. All samples underwent immunomagnetic separation and were plated onto sorbitol MacConkey agar with cefixime and potassium tellurite. Identification of E. coli O157 was based on indole production, positive latex agglutination for O157 antigen, API 20E test strip results, PCR for the eaeA gene, and the presence of at least one Shiga toxin. E. coli O157 was detected in 52 of 504 feed samples (10.3%) by using GN broth enrichment and in 46 of 504 feed samples (9.1%) by using TSB followed by TSB supplemented with cefixime and vancomycin. E. coli O157 was detected in 75 of 504 feed bunk samples (14.9%) by one or both methods. There was no correlation between E. coli O157 prevalence and generic coliform counts in feeds. The prevalence of E. coli O157 in cattle feed warrants further studies to increase our knowledge of the on-farm ecology of E. coli O157 in order to develop strategies to prevent food-borne disease in humans.  相似文献   

16.
AIMS: To determine the incidence of transfer of a naturally occurring rifampicin-resistant strain of Escherichia coli (RREC) among cattle in a research feedlot. METHODS AND RESULTS: During three separate experiments, steers in three different pens were orally inoculated with RREC originally isolated from bovine faeces. Faecal swabs were performed on all steers in the feedlot at approximately 5 week intervals thereafter. Faecal grab samples were collected from steers in the inoculated and the immediately adjacent pens for up to 4 months. In all three experiments, the inoculated steers and penmates shed RREC within 48 h, and then shed intermittently throughout the sampling periods. Transfer of RREC to steers in an adjacent pen was confirmed only during the first experiment, but never to those in non-adjacent pens. All recovered RREC isolates were compared with the inoculated strain using multiple methods indicating that all RREC isolates were descendants of the original inoculated strain. CONCLUSIONS: Detection of the RREC strain on the pen floor and within the animal handling system, but not in the feed troughs or water bowls, suggests faecal-oral to be the primary mode of transmission among animals. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that in the absence of selective pressure, antibiotic-resistant bacteria may persist in cattle for a short duration but widespread transfer among cattle in a feedlot environment may be an exception rather than the norm. Modifications to feedlot management are discussed.  相似文献   

17.
There is a trend to reduce the space allowance per animal in cattle feedlot, despite its potential negative impact on animal welfare. Aiming to evaluate the effects of space allowance per animal in outdoor feedlots on beef cattle welfare, a total of 1350 Nellore bulls (450 pure and 900 crossbred) were confined for 12 weeks using three space allowances: 6 (SA6), 12 (SA12) and 24 (SA24) m2/animal (n = 450 per treatment). Bulls were housed in three pens per treatment (n = 150 per pen). The first 6 weeks in the feedlot were defined as ‘dry’ and the last as ‘rainy’ period, according to the accumulated precipitation. Animal-based (body cleanliness, health indicators and maintenance behaviour) and environmental-based indicators (mud depth and air dust concentration) were assessed weekly during the feedlot period. Most of the health indicators (nasal and ocular discharge, hoof and locomotion alterations, diarrhoea, bloated rumen and breathing difficulty) were assessed in a subset of 15 animals randomly selected from each pen. Coughs and sneezes were counted in each pen. Maintenance behaviours (number of animals lying and attending the feed bunk) were recorded with scan sampling and instantaneous recording at 20-min intervals. Postmortem assessments were carried out in all animals by recording the frequencies of macroscopic signs of bronchitis, pulmonary emphysema, nephritis and urinary cyst and by measuring the weight and cortical and medullar areas of adrenal glands (n = 30 per pen). Compared with SA12 and SA24, SA6 showed a greater number of sneezes per minute during the dry period and a greater percentage of animals with locomotion alterations during the rainy period. Coughing, diarrhoea and nasal discharge affected a larger number of animals in the SA6 relative to the other two groups. During the rainy period, there was a lower percentage of animals with nasal and ocular discharge, and a greater percentage of animals with abnormal hoof and lying. A lower percentage of animals in SA6 and SA12 (but not SA24) attended the feed bunk during the rainy relative to the dry period. A mud depth score of 0 (no mud) was most frequent in SA24 pens, followed by SA12 and then SA6. Adrenal gland weight and cortical area were lower in SA24 animals compared with those in SA6 and SA12. The results show that decreasing the space allowance for beef cattle in outdoor feedlots degrades the feedlot environment and impoverishes animal welfare.  相似文献   

18.
In a longitudinal study in a Finnish cattle finishing unit we investigated excretion and sources of Escherichia coli O157 in bulls from postweaning until slaughter. Three groups of 31 to 42 calves were sampled in a calf transporter before they entered the farm and four to seven times at approximately monthly intervals at the farm. All calves sampled in the livestock transporter were negative for E. coli O157 on arrival, whereas positive animals were detected 1 day later. During the fattening period the E. coli O157 infection rate varied between 0 and 38.5%. The animals were also found to be shedding during the cold months. E. coli O157 was isolated from samples taken from water cups, floors, and feed passages. E. coli O157 was detected in 9.7 to 38.9% of the fecal samples taken at slaughter, while only two rumen samples and one carcass surface sample were found to be positive. E. coli O157 was isolated from barn surface samples more often when the enrichment time was 6 h than when the enrichment time was 24 h (P < 0.0001). Fecal samples taken at the abattoir had lower counts (≤0.4 MPN/g) than fecal samples at the farm (P < 0.05). E. coli O157 was isolated more often from 10-g fecal samples than from 1-g fecal samples (P < 0.0001). Most farm isolates belonged to one pulsed-field gel electrophoresis (PFGE) genotype (79.6%), and the rest belonged to closely related PFGE genotypes. In conclusion, this study indicated that the finishing unit rather than introduction of new cattle was the source of E. coli O157 at the farm and that E. coli O157 seemed to persist well on barn surfaces.  相似文献   

19.
The prevalence of Campylobacter jejuni in commercial feedlot cattle was monitored throughout the feeding period by repeated bacteriologic culture of feces. Fecal pats (n = 10) in 20 feedlot pens were sampled at 2-weeks interval beginning at entry into the feedlot and continuing until slaughter. The least-squares mean C. jejuni prevalence increased from 1.6% at the first sampling to 61.3% at the final sampling just prior to slaughter. Diverse C. jejuni pulsed-field gel electrophoresis macrorestriction profiles (MRP) were identified among the cattle isolates, but five prevalent MRP and minor variants accounted for >80% of all typed isolates. Chlorination of the water supplied to the water troughs of half of the pens did not affect C. jejuni prevalence in the cattle. Overall, the least-squares mean C. jejuni prevalences were 45.6 and 43.6% in chlorinated and nonchlorinated feedlot pens, respectively. The results of this study demonstrate apparent transmission of C. jejuni among feedlot cattle during the feeding period, unaffected by water chlorination, resulting in a high prevalence of C. jejuni excretion by cattle approaching slaughter.  相似文献   

20.
Our objectives were to evaluate the prevalence of Escherichia coli O157:H7 in cattle fed diets supplemented with 20 or 40% dried distillers'' grains (DG) (DDG) or wet DG (WDG) and assess whether removing DG from diets before slaughter affected fecal shedding of E. coli O157:H7. Eight hundred forty steers were allocated to 70 pens (12 steers/pen). Treatments were no DG (control), 20% DDG or WDG, and 40% DDG or WDG, and each was replicated in 14 pens. In phase 1, eight floor fecal samples were collected from each pen every 2 weeks for 12 weeks for isolation of E. coli O157:H7 and detection of high shedders. In phase 2, half of the pens with DG were transitioned to the no-DG control diet, and pen floor fecal samples were collected weekly from all pens for 4 weeks. During phase 1, prevalence of E. coli O157:H7 was 20.8% and 3.2% for high shedders. The form of DG had no significant effect on fecal E. coli O157:H7 shedding. The prevalence levels of E. coli O157:H7 and the numbers of high shedders were not different between diets with 0 or 20% DG; however, cattle fed 40% DG had a higher prevalence and more high shedders than cattle fed 0 or 20% DG (P ≤ 0.05). During phase 2, overall and high-shedder prevalence estimates were 3.3% and <0.1%, respectively, and there were no differences between those for different DG forms and inclusion levels or when DG was removed from diets. The form of DG had no impact on E. coli O157:H7; however, fecal shedding was associated with the DG inclusion level.Cattle are asymptomatic reservoirs for Escherichia coli O157:H7, a food-borne pathogen associated with gastrointestinal disease in thousands of Americans each year. The organism colonizes the hindgut of cattle (18, 27) and is shed in cattle feces. Once shed, E. coli O157:H7 can contaminate food and water, creating a food safety risk (20). Contamination of beef products occurs during slaughter and is associated with the prevalence of E. coli O157:H7 in feces and on the hides of cattle at harvest (5, 8, 12).The prevalence of E. coli O157:H7 in cattle is associated with many factors, including season, geographic location, and diet. Previous work has shown that cattle fed diets containing distillers'' grains (DG), an ethanol fermentation coproduct, have a higher prevalence of E. coli O157:H7 than cattle fed diets without DG (10, 28). Distillers'' grains are a valuable feed commodity for cattle producers, and use of these coproducts has increased with the expansion of the ethanol industry (14, 17). Distillers'' grains for use in cattle diets are available in wet (WDG) or dry (DDG) form. The association between feeding DG and E. coli O157:H7 prevalence has been shown with both forms (10, 28), but no study has directly compared the two forms. The levels of DG supplementation in cattle diets generally range from 10 to 50% (dry matter basis) depending on whether the coproduct is used as a protein or energy source. As a protein supplement, DG is included at 10 to 15%; as an energy source, the DG level is generally dictated by coproduct availability and grain price (14). There is some indication that E. coli O157:H7 prevalence is different for cattle fed different levels of DG (19). However, no study has specifically evaluated the relationship between E. coli O157:H7 prevalence and DG inclusion level. Evaluation of these two factors (form and inclusion level) is important for furthering our understanding of the association between DG and E. coli O157:H7 in cattle.We also were interested in determining whether removing the DG component of the diet would lower fecal prevalence of E. coli O157:H7. Such a strategy may lead to potential mitigation options and would provide further evidence of a positive association between feeding DG and E. coli O157:H7 prevalence in cattle. In this two-phase study, our objectives were to (i) concurrently evaluate the effect of DG inclusion level and form on E. coli O157:H7 prevalence in feedlot cattle and (ii) determine if removing DG from cattle diets subsequently reduces the fecal prevalence of E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号