首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexin A2 (AnxA2) is a phospholipid binding protein that has been implicated in many membrane-related cellular functions. AnxA2 is able to bind different acidic phospholipids such as phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PI2P). This binding is mediated by Ca(2+)-dependent and Ca(2+)-independent mechanisms. The specific functions of annexin A2 related to these two phospholipids and the molecular mechanisms involved in their interaction remain obscure. Herein we studied the influence of lipid composition on the Ca(2+)-dependency of AnxA2-mediated membrane bridging and on membrane fluidity. Membrane models of ten different lipid compositions and detergent-resistant membranes from two cellular sources were investigated. The results show that the AnxA2-mediated membrane bridging requires 3 to 50 times less calcium for PS-membranes than for PI2P-membranes. Membrane fluidity was measured by the ratiometric fluorescence parameter generalized polarization method with two fluorescent probes. Compared to controls containing low phospholipid ligand, AnxA2 was found to reduce the membrane fluidity of PI2P-membranes twice as much as the PS-membranes in the presence of calcium. On the contrary, at mild acidic pH in the absence of calcium AnxA2 reduces the fluidity of the PS-membranes more than the PI2P-membranes. The presence of cholesterol on the bilayer reduced the AnxA2 capacity to reduce membrane fluidity. The presented data shed light on the specific roles of PI2P, PS and cholesterol present on membranes related to the action of annexin A2 as a membrane bridging molecule during exocytosis and endocytosis events and as a plasma membrane domain phospholipid packing regulator.  相似文献   

2.
The functional hallmark of annexins is the ability to bind to the surface of phospholipid membranes in a reversible, Ca(2+)-dependent manner. We now report that human annexin V and hydra annexin XII reversibly bound to phospholipid vesicles in the absence of Ca(2+) at low pH; half-maximal vesicle association occurred at pH 5.3 and 5. 8, respectively. The following biochemical data support the hypothesis that these annexins insert into bilayers at mildly acidic pH. First, a photoactivatable reagent (3-trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine) which selectively labels proteins exposed to the hydrophobic domain of bilayers reacted with these annexins at pH 5.0 and below but not at neutral pH. Second, in a Triton X-114 partitioning assay, annexins V and XII act as integral membrane proteins at low pH and as hydrophilic proteins at neutral pH; in the presence of phospholipids half-maximal partitioning into detergent occurred at pH approximately 5.0. Finally, annexin V or XII formed single channels in phospholipid bilayers at low pH but not at neutral pH. A model is discussed in which the concentrations of H(+) and Ca(2+) regulate the reversible conversion of three forms of annexins-soluble, peripheral membrane, and transmembrane.  相似文献   

3.
The regulation of membrane curvature plays an important role in many membrane trafficking and fusion events. Recent studies have begun to identify some of the proteins involved in controlling and sensing the curvature of cellular membranes. A mechanistic understanding of these processes is limited, however, as structural information for the membrane-bound forms of these proteins is scarce. Here, we employed a combination of biochemical and biophysical approaches to study the interaction of annexin B12 with membranes of different curvatures. We observed selective and Ca(2+)-independent binding of annexin B12 to negatively charged vesicles that were either highly curved or that contained lipids with negative intrinsic curvature. This novel curvature-dependent membrane interaction induced major structural rearrangements in the protein and resulted in a backbone fold that was different from that of the well characterized Ca(2+)-dependent membrane-bound form of annexin B12. Following curvature-dependent membrane interaction, the protein retained a predominantly alpha-helical structure but EPR spectroscopy studies of nitroxide side chains placed at selected sites on annexin B12 showed that the protein underwent inside-out refolding that brought previously buried hydrophobic residues into contact with the membrane. These structural changes were reminiscent of those previously observed following Ca(2+)-independent interaction of annexins with membranes at mildly acidic pH, yet they occurred at neutral pH in the presence of curved membranes. The present data demonstrate that annexin B12 is a sensor of membrane curvature and that membrane curvature can trigger large scale conformational changes. We speculate that membrane curvature could be a physiological signal that induces the previously reported Ca(2+)-independent membrane interaction of annexins in vivo.  相似文献   

4.
Annexin A4 belongs to a class of Ca(2+)-binding proteins for which different functions in the cell have proposed, e.g. involvement in exocytosis and in the coagulation process. All these functions are related to the ability of the annexins to bind to acidic phospholipids. In this study the interaction of annexin A4 with large unilamellar vesicles (LUV) prepared from phosphatidylserine (PS) or from phosphatidic acid (PA) is investigated at neutral and acidic pH. Annexin A4 strongly binds to either lipid at acidic pH, whereas at neutral pH only weak binding to PA and no binding to PS occurs. Addition of 40 microM Ca(2+) leads to a strong binding to the lipids also at neutral pH. This is caused by the different electric charge of the protein below and above its isoelectric point. Binding of annexin A4 induces dehydration of the vesicle surface. The strength of the effects is much greater at pH 4 than at pH 7.4. At pH 7.4 annexin A4 reduces the Ca(2+)-threshold concentration necessary to induce fusion of PA LUV. The Ca(2+) induced fusion of PS LUV is not affected by annexin A4 at pH 7.4. At pH 4 annexin A4 induces fusion of either vesicles without Ca(2+). Despite the low binding extents at neutral pH annexin A4 induces a Ca(2+) independent leakage of PS- or PA-LUV. The leakage extent is increased at acidic pH. From the data two suggestions are made: (1) At pH 4 annexin A4 (at least partially) penetrates into the bilayer in contrast to the preferred location at the vesicle surface at neutral pH. The conformation of annexin A4 seems to be different at the two conditions. (2) At neutral pH, Annexin A4 seems to be able to bind two PA vesicles simultaneously; however, only one PS vesicle at the same time. This behavior might be related to a recently described double Ca(2+) binding site, which appears to be uniquely suited for PS.  相似文献   

5.
Annexin 2 is a member of the annexin family which has been implicated in calcium-regulated exocytosis. This contention is largely based on Ca(2+)-dependent binding of the protein to anionic phospholipids. However, annexin 2 was shown to be associated with chromaffin granules in the presence of EGTA. A fraction of this bound annexin 2 was released by methyl-beta-cyclodextrin, a reagent which depletes cholesterol from membranes. Restoration of the cholesterol content of chromaffin granule membranes with cholesterol/methyl-beta-cyclodextrin complexes restored the Ca(2+)-independent binding of annexin 2. The binding of both, monomeric and tetrameric forms of annexin 2 was also tested on liposomes of different composition. In the absence of Ca(2+), annexin 2, especially in its tetrameric form, bound to liposomes containing phosphatidylserine, and the addition of cholesterol to these liposomes increased the binding. Consistent with this observation, liposomes containing phosphatidylserine and cholesterol were aggregated by the tetrameric form of annexin 2 at submicromolar Ca(2+) concentrations. These results indicate that the lipid composition of membranes, and especially their cholesterol content, is important in the control of the subcellular localization of annexin 2 in resting cells, at low Ca(2+) concentration. Annexin 2 might be associated with membrane domains enriched in phosphatidylserine and cholesterol.  相似文献   

6.
Annexin A2 (AnxA2) is a Ca(2+)- and acidic phospholipid-binding protein involved in many cellular processes. It undergoes Ca(2+)-mediated membrane bridging at neutral pH and has been demonstrated to be involved in an H(+)-mediated mechanism leading to a novel AnxA2-membrane complex structure. We used fluorescence techniques to characterize this H(+)-dependent mechanism at the molecular level; in particular, the involvement of the AnxA2 N-terminal domain. This domain was labeled at Cys-8 either with acrylodan or pyrene-maleimide fluorescent probes. Steady-state and time-resolved fluorescence analysis for acrylodan and fluorescence quenching by doxyl-labeled phospholipids revealed direct interaction between the N-terminal domain and the membrane. The absence of pyrene excimer suggested that interactions between N termini are not involved in the H(+)-mediated mechanism. These findings differ from those previously observed for the Ca(2+)-mediated mechanism. Protein titration experiments showed that the protein concentration for half-maximal membrane aggregation was twice for Ca(2+)-mediated compared with H(+)-mediated aggregation, suggesting that AnxA2 was able to bridge membranes either as a dimer or as a monomer, respectively. An N-terminally deleted AnxA2 was 2-3 times less efficient than the wild-type protein for H(+)-mediated membrane aggregation. We propose a model of AnxA2-membrane assemblies, highlighting the different roles of the N-terminal domain in the H(+)- and Ca(2+)-mediated membrane bridging mechanisms.  相似文献   

7.
Annexin 5 is a Ca(2+)-binding protein, the function of which is poorly understood. Structural and electrophysiological studies have shown that annexin 5 can mediate Ca(2+) fluxes across phospholipid membranes in vitro [1]. There is, however, no direct evidence for the existence of annexin 5 Ca(2+) channels in living cells. Here, we show that annexin 5 inserts into phospholipid vesicle membranes at neutral pH in the presence of peroxide. We then used targeted gene disruption to explore the role of annexin 5 in peroxide-induced Ca(2+) signaling in DT40 pre-B cells. DT40 clones lacking annexin 5 exhibited normal Ca(2+) responses to both thapsigargin and B-cell receptor stimulation, but lacked the sustained phase of the response to peroxide. This late phase was due to Ca(2+) influx from the extracellular space, demonstrating that annexin 5 mediates a peroxide-induced Ca(2+) influx. Thus, peroxide induces annexin 5 membrane insertion in vitro, and peroxide-induced Ca(2+) entry in vivo in DT40 cells requires annexin 5. Our results are consistent with a role for annexin 5 either as a Ca(2+) channel, or as a signaling intermediate in the peroxide-induced Ca(2+)-influx pathway.  相似文献   

8.
Microsomal fraction was prepared by ultracentrifugation of homogenates of cortical tissue from bovine brains. The preparation displayed ATPase (adenosine triphosphatase) activity in the presence of Mg(2+) (6.4mumol of P(i)/h per mg of protein) and Ca(2+) (3.4mumol of P(i)/h per mg of protein). Kinetic analysis of the activation of the enzyme preparation by Ca(2+) resulted in the demonstration of two apparent K(m) values for Ca(2+) (6.0x10(-8)m and 1.2x10(-6)m). Treatment of the microsomal membranes with Triton X-100 resulted in solubilization of the ATPase, though with some loss of activity. The solubilized microsomal proteins were incorporated into liposomes. By incubation of the liposomes in media containing (45)Ca(2+) an ATP-dependent uptake of Ca(2+) was demonstrated. The solubilized preparation was subjected to preparative isoelectric focusing in granulated gel beds. Two distinct peaks of Mg(2+)- and Ca(2+)-dependent ATPase activity were observed at pH4.8 (peak 4.8) and at pH6.3 (peak 6.3). The material isolated in peaks 4.8 and 6.3 was focused in polyacrylamide gel with pH gradients. The material corresponding to peak 4.8 consisted of a single protein, whereas peak 6.3 contained one major and at least one minor protein. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis confirmed these results and indicated that the major component of peak 4.8 and the protein of peak 6.3 both had a molecular weight of 105000. The material in peaks 4.8 and 6.3 was assayed for ATPase activity in the presence of various concentrations of Ca(2+). Kinetic analysis of the results for peak 4.8 demonstrated an apparent K(m) value for Ca(2+) of 4.1x10(-8)m. The enzyme isolated at pH6.3 had an apparent K(m) value of 3.8x10(-6)m. However, when the material from peak 4.8 was incubated in the presence of 1mm-Mg(2+) the ATPase could not be activated by Ca(2+).  相似文献   

9.
Membrane fusion was studied using human neutrophil plasma membrane preparations and phospholipid vesicles approximately 0.15 microns in diameter and composed of phosphatidylserine and phosphatidylethanolamine in a ratio of 1 to 3. Liposomes were labeled with N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl (NBD) and lissamine rhodamine B derivatives of phospholipids. Apparent fusion was detected as an increase in fluorescence of the resonance energy transfer donor, NBD, after dilution of the probes into unlabeled membranes. 0.5 mM Ca2+ alone was sufficient to cause substantial fusion of liposomes with a plasma membrane preparation but not with other liposomes. Both annexin I and des(1-9)annexin I caused a substantial increase in the rate of fusion under these conditions while annexin V inhibited fusion. Fusion mediated by des(1-9)annexin I was observed at Ca2+ concentrations as low as approximately 5 microM, suggesting that the truncated form of this protein may be active at physiologically low Ca2+ concentrations. Trypsin treated plasma membranes were incapable of fusion with liposomes, suggesting that plasma membrane proteins may mediate fusion. Liposomes did not fuse with whole cells at any Ca2+ concentration, indicating that the cytoplasmic side of the membrane is involved. These results suggest that annexin I and unidentified plasma membrane proteins may play a role in Ca(2+)-dependent degranulation of human neutrophils.  相似文献   

10.
The conventional plant phospholipase D (PLD) requires Ca(2+) for activity; however, the most distinct and puzzling feature of this PLD is its in vitro need for 20 to 100 mM Ca(2+). This noncytoplasmic Ca(2+) requirement has raised doubt about the role of Ca(2+) in regulating its function in vivo. Using the cloned conventional castor bean PLD, PLDalpha, expressed in Escherichia coli, this study demonstrates that this PLD is active at micromolar, near-physiological concentrations of Ca(2+), and this activity at low Ca(2+) requires an acidic pH (4.5-5.5). By comparison, the newly cloned PLDbeta and -gamma were active only at neutral pH under the same Ca(2+) concentrations. This study also shows that PLDalpha activity at low Ca(2+) needs substrates presented as a mixture of membrane lipids. Phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate are equally effective in stimulating the acidic PLDalpha activity, whereas phophatidylinositol is inactive. These results suggest that the conventional plant PLD in vivo is an acidic phospholipase that is active at near-physiological Ca(2+) concentrations. The possible physiological significance of these findings will be discussed.  相似文献   

11.
Annexin II is a member of the annexin family of Ca(2+)- and phospholipid-binding proteins which is particularly enriched on early endosomal membranes and has been implicated in participating in endocytic events. In contrast to other endosomal annexins the association of annexin II with its target membrane can occur in the absence of Ca(2+) in a manner depending on the unique N-terminal domain of the protein. However, endosome binding of annexin II does not require formation of a protein complex with the intracellular ligand S100A10 (p11) as an annexin II mutant protein (PM AnxII) incapable of interacting with p11 is still present on endosomal membranes. Fusion of the N-terminal sequence of this PM AnxII (residues 1-27) to the conserved protein core of annexin I transfers the capability of Ca(2+)-independent membrane binding to the otherwise Ca(2+)-sensitive annexin I. These results underscore the importance of the N-terminal sequence of annexin II for the Ca(2+)-independent endosome association and argue for a direct interaction of this sequence with an endosomal membrane receptor.  相似文献   

12.
Using a subcellular-specific proteomic approach, we have identified by protein microsequencing, a putative 35-kDa annexin from among the chloroplast envelope polypeptides. To confirm this identification, we demonstrate that (a) a 35-kDa protein, identified as annexin by antibody cross-reactivity, co-purifies with Percoll-purified chloroplasts and their envelope membranes when extracted in the presence of Ca(2+) and (b) the native spinach annexin protein binds to chloroplast-specific lipids in a Ca(2+)-dependent manner. The binding of the spinach annexin to these glycerolipids occurs at similar Ca(2+) concentrations as those, which promote the interaction of annexins to phospholipids in other membranes. Among chloroplast glycerolipids known to be accessible on the cytosolic face (outer leaflet) of the outer envelope membrane, sulfolipid, and probably phosphatidylinositol, would be the sole candidates for a putative Ca(2+)-dependent interaction of annexin with the chloroplast surface.  相似文献   

13.
Annexins are Ca(2+)-dependent phospholipid-binding proteins composed of two domains: A conserved core that is responsible for Ca(2+)- and phospholipid-binding, and a variable N-terminal tail. A Ca(2+)-independent annexin 2-membrane association has been shown to be modulated by the presence of cholesterol in the membranes. Herein, the roles of the core and the N-terminal tail on the cholesterol-enhancement of annexin 2 membrane binding and aggregation were studied. The results show that (i) the cholesterol-mediated increase in membrane binding and in the Ca(2+) sensitivity for membrane aggregation were not modified by a N-terminal peptide (residues 15-26), and were conserved in mutants of the N-terminal end (S11 and S25 substitutions); (ii) cholesterol induced an increase in the Ca(2+)-dependent membrane binding and aggregation of the N-terminally truncated protein (Delta 1-29); and (iii) annexins 5 and 6, two proteins with unrelated N-terminal tails and homologous core domains showed a cholesterol-mediated enhancement of the Ca(2+)-dependent binding to membranes. These data indicate that the core domain is responsible for the cholesterol-mediated effects. A model for the cholesterol effect in membrane organisation, annexin binding and aggregation is discussed.  相似文献   

14.
We previously reported cloning of the Taenia solium annexin B1 gene from a metacestode cDNA expression library and demonstrated that it acts as a protective antigen for effective vaccine development against cysticercosis. In the present study we produced recombinant annexin B1 and antiserum against the protein to investigate its structural and functional properties. Western blotting of metacestode fractions indicated that T. solium annexin B1, similar to vertebrate annexins, associates with acid phospholipids in the presence of Ca(2+). This property was confirmed by the recognition of apoptotic cells by labeled annexin B1. CD spectroscopy results demonstrated that alpha-helices are the main secondary structures of the protein. Ca(2+) binding increases the alpha-helix content and causes significant thermal stabilization with a melting temperature increase of approximately 10 degrees C. Functional Ca(2+)-dependent phospholipid binding sites of annexin B1 were investigated using mutant proteins. By changing a conserved acidic amino acid residue that putatively combines Ca(2+) in each domain of annexin B1 singly or in combination, we found that Ca(2+) binding in the first domain is more important than that at the other Ca(2+) binding sites. Annexin B1 is a metacestode stage-specific antigen, with the protein being mainly localized in the teguments and surrounding cyst wall of T. solium metacestodes, suggesting a role in the parasite-host interaction.  相似文献   

15.
Annexins are soluble proteins that can interact with membranes in a Ca2+-dependent manner. Recent studies have shown that they can also undergo Ca2+-independent membrane interactions that are modulated by pH and phospholipid composition. Here, we investigated the structural changes that occurred during Ca2+-independent interaction of annexin B12 with phospholipid vesicles as a function of pH. Electron paramagnetic resonance analysis of a helical hairpin encompassing the D and E helices in the second repeat of the protein showed that this region refolded and formed a continuous amphipathic alpha helix following Ca2+-independent binding to membranes at mildly acidic pH. At pH 4.0, this helix assumed a transmembrane topography, but at pH approximately 5.0-5.5, it was peripheral and approximately parallel to the membrane. The peripheral form was reversibly converted into the transmembrane form by lowering the pH and vice versa. Furthermore, analysis of vesicles incubated with annexin B12 using freeze-fracture electron microscopy methods showed classical intramembrane particles at pH 4.0 but none at pH 5.3. Together, these data raise the possibility that the peripheral-bound form of annexin B12 could act as a kinetic intermediate in the formation of the transmembrane form of the protein.  相似文献   

16.
Annexins are soluble proteins that are best known for their ability to undergo reversible Ca(2+)-dependent binding to the surface of phospholipid bilayers. Recent studies, however, have shown that annexins also reversibly bind to membranes in a Ca(2+)-independent manner at mildly acidic pH. We investigated the structural changes that occur upon pH-dependent membrane binding by performing a nitroxide scan on the helical hairpin encompassing helices A and B in the fourth repeat of annexin B12. Residues 251-273 of annexin B12 were replaced, one at a time, with cysteine and then labeled with a nitroxide spin label. Electron paramagnetic resonance (EPR) mobility and accessibility analyses of soluble annexin B12 derivatives were in excellent agreement with the known crystal structure of annexin B12. However, EPR studies of annexin B12 derivatives bound to membranes at pH 4.0 indicated major structural changes in the scanned region. The helix-loop-helix structure present in the soluble protein was converted into a continuous transmembrane alpha-helix that was exposed to the hydrophobic core of the bilayer on one side and exposed to an aqueous pore on the other side. Asp-264 was on the hydrophobic membrane-exposed face of the amphipathic transmembrane helix, thereby suggesting that protonation of its carboxylate group stabilized the transmembrane form. Inspection of the amino acid sequence of annexin B12 revealed several other helical hairpin regions that might refold and form continuous amphipathic transmembrane helices in response to protonation of Asp or Glu switch residues on or near the hydrophobic face of the helix.  相似文献   

17.
Fang J  Zhang B  Chen N  Asai H 《Zoological science》2004,21(5):527-532
Chemical modification of glycerinated stalks of Vorticella with TNM is used to investigate the role of tyrosine residues in the Ca(2+)-induced contraction of the spasmoneme. Tetranitromethane (TNM) is often employed as a specific reagent for the nitration of tyrosine residues in a protein at neutral and slightly alkaline pHs although TNM can also oxidize cysteine residues in the acidic and neutral pH range. Prior incubation with Ca(2+) of stalks to be treated with TNM can protect the spasmoneme from irreversible denaturation. On the other hand, TNM treatment in the absence of free Ca(2+) causes an irreversible denaturation of the spasmoneme. It was revealed by us that an isolated Ca(2+)-binding protein called spasmin could not bind with Ca(2+) after TNM treatment, even if the treatment was performed in the presence of Ca(2+). In an additional experiment, we confirmed that the chemical modification of cysteine residues in the spasmoneme with N-7-dimethyl-amino-4methyl- coumarinyl- maleimide (DACM) has no effect on the contractibility. These results suggest that tyrosine residues in spasmin are essential for spasmoneme contraction and are protected from TNM in the presence of Ca(2+) when spasmin binds with its receptor protein in the spasmoneme.  相似文献   

18.
Immunocytochemical studies demonstrate that annexin V relocates to the plasma membranes of intact stimulated blood platelets. Anti-annexin V antibodies label the cytoplasmic side of the substrate-adherent plasma membrane of mechanically unroofed, glass-activated platelets and colocalize with actin. In addition, crosslinking experiments using detergent-solubilized membranes of activated platelets have identified an 85-kDa complex containing annexin V. The 85-kDa complex is also recognized by antibodies against actin, suggesting that annexin V interacts with actin. In addition, annexin V was found to associate with filamentous actin in the presence of millimolar Ca(2+). Annexin V was also shown by immunofluorescence microscopy to be associated with platelet cytoskeletons, colocalizing with actin in the presence of micromolar Ca(2+). These findings provide the first evidence for annexin V binding to the plasma membrane and to the actin-based cytoskeleton in activated platelets and indicate that annexin V may function in both cytoskeletal and membrane domains.  相似文献   

19.
Membranes containing either negatively charged lipids or glycolipids can be aggregated by millimolar concentrations of Ca(2+). In the case of membranes made from the negatively charged phospholipid phosphatidylserine, aggregation leads to vesicle fusion and leakage. However, some glycolipid-containing biological membranes such as plant chloroplast thylakoid membranes naturally occur in an aggregated state. In the present contribution, the effect of Ca(2+)-induced aggregation on membrane stability during freezing and in highly concentrated salt solutions (NaCl+/-CaCl(2)) has been determined in membranes containing different fractions of uncharged galactolipids, or a negatively charged sulfoglucolipid, or the negatively charged phospholipid phosphatidylglycerol (PG), in membranes made from the uncharged phospholipid phosphatidylcholine (PC). In the case of the glycolipids, aggregation did not lead to fusion or leakage even under stress conditions, while it did lead to fusion and leakage in PG-containing liposomes. Liposomes made from a mixture of glycolipids and PG that approximates the lipid composition of thylakoids were very unstable, both during freezing and at high solute concentrations and leakage and fusion were increased in the presence of Ca(2+). Collectively, the data indicate that the effects of Ca(2+)-induced aggregation of liposomes on membrane stability depend critically on the type of lipid involved in aggregation. While liposomes aggregated through glycolipids are highly stable, those aggregated through negatively charged lipids are severely destabilized.  相似文献   

20.
Nedd4 is a ubiquitin protein ligase (E3) containing a C2 domain, three or four WW domains, and a ubiquitin ligase HECT domain. We have shown previously that the C2 domain of Nedd4 is responsible for its Ca(2+)-dependent targeting to the plasma membrane, particularly the apical region of epithelial MDCK cells. To investigate this apical preference, we searched for Nedd4-C2 domain-interacting proteins that might be involved in targeting Nedd4 to the apical surface. Using immobilized Nedd4-C2 domain to trap interacting proteins from MDCK cell lysate, we isolated, in the presence of Ca(2+), a approximately 35-40-kD protein that we identified as annexin XIII using mass spectrometry. Annexin XIII has two known isoforms, a and b, that are apically localized, although XIIIa is also found in the basolateral compartment. In vitro binding and coprecipitation experiments showed that the Nedd4-C2 domain interacts with both annexin XIIIa and b in the presence of Ca(2+), and the interaction is direct and optimal at 1 microM Ca(2+). Immunofluorescence and immunogold electron microscopy revealed colocalization of Nedd4 and annexin XIIIb in apical carriers and at the apical plasma membrane. Moreover, we show that Nedd4 associates with raft lipid microdomains in a Ca(2+)-dependent manner, as determined by detergent extraction and floatation assays. These results suggest that the apical membrane localization of Nedd4 is mediated by an association of its C2 domain with the apically targeted annexin XIIIb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号