首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Notch signalling is likely to regulate multiple aspects of lymphoid development and function. During T cell development, Notch signalling is required for commitment of the earliest progenitor, and may also function during other developmental stages. T cell commitment from a common lymphoid progenitor occurs at the expense of B cell development, suggesting that Notch signalling inhibits the earliest stage of B lymphopoiesis. In contrast, recent evidence suggests that Notch promotes the development of marginal zone lymphocytes. Not only is Notch required for later stages of B cell development, but several viral proteins appear to utilize Notch signalling in B cells to mediate their functions. In this review, we will focus on potential roles of Notch signalling in B lymphopoiesis and also consider how viral proteins may utilize Notch signalling in B cells.  相似文献   

2.
The limb musculature arises by delamination of premyogenic cells from the lateral dermomyotome. Initially the cells express Pax3 but, upon entering the limb bud, they switch on the expression of MyoD and Myf5 and undergo terminal differentiation into slow or fast fibres, which have distinct contractile properties that determine how a muscle will function. In the chick, the premyogenic cells express the Wnt antagonist Sfrp2, which is downregulated as the cells differentiate, suggesting that Wnts might regulate myogenic differentiation. Here, we have investigated the role of Wnt signalling during myogenic differentiation in the developing chick wing bud by gain- and loss-of-function studies in vitro and in vivo. We show that Wnt signalling changes the number of fast and/or slow fibres. For example, in vivo, Wnt11 decreases and increases the number of slow and fast fibres, respectively, whereas overexpression of Wnt5a or a dominant-negative Wnt11 protein have the opposite effect. The latter shows that endogenous Wnt11 signalling determines the number of fast and slow myocytes. The distinct effects of Wnt5a and Wnt11 are consistent with their different expression patterns, which correlate with the ultimate distribution of slow and fast fibres in the wing. Overexpression of activated calmodulin kinase II mimics the effect of Wnt5a, suggesting that it uses this pathway. Finally, we show that overexpression of the Wnt antagonist Sfrp2 and DeltaLef1 reduces the number of myocytes. In Sfrp2-infected limbs, the number of Pax3 expressing cells was increased, suggesting that Sfrp2 blocks myogenic differentiation. Therefore, Wnt signalling modulates both the number of terminally differentiated myogenic cells and the intricate slow/fast patterning of the limb musculature.  相似文献   

3.
Gene targeting has indicated that Myf5 and MyoD are required for myogenic determination because skeletal myoblasts and myofibers are missing in mouse embryos lacking both Myf5 and MyoD. To investigate the fate of Myf5:MyoD-deficient myogenic precursor cells during embryogenesis, we examined the sites of epaxial, hypaxial, and cephalic myogenesis at different developmental stages. In newborn mice, excessive amounts of adipose tissue were found in the place of muscles whose progenitor cells have undergone long-range migrations as mesenchymal cells. Analysis of the expression pattern of Myogenin-lacZ transgene and muscle proteins revealed that myogenic precursor cells were not able to acquire a myogenic fate in the trunk (myotome) nor at sites of MyoD induction in the limb buds. Importantly, the Myf5-dependent precursors, as defined by Myf5(nlacZ)-expression, deficient for both Myf5 and MyoD, were observed early in development to assume nonmuscle fates (e.g., cartilage) and, later in development, to extensively proliferate without cell death. Their fate appeared to significantly differ from the fate of MyoD-dependent precursors, as defined by 258/-2.5lacZ-expression (-20 kb enhancer of MyoD), of which a significant proportion failed to proliferate and underwent apoptosis. Taken together, these data strongly suggest that Myf5 and MyoD regulatory elements respond differentially in different compartments.  相似文献   

4.
5.
For many years, researchers have focused on the contribution of Notch signalling to lymphoid development. Only recently have investigators begun to ask what role, if any, Notch has during the activation and differentiation of naive CD4(+) T cells in the periphery. As interest in this issue grows, it is becoming increasingly clear that the main role of Notch signalling, to regulate cell-fate decisions, might also be influential in peripheral T cells.  相似文献   

6.
7.
Notch signalling in hematopoiesis   总被引:17,自引:0,他引:17  
The Notch pathway is a widely utilized, evolutionarily conserved regulatory system that plays a central role in the fate decisions of multipotent precursor cells. Notch often acts by inhibiting differentiation along a particular pathway while permitting or promoting self-renewal or differentiation along alternative pathways. Haematopoietic cells and stromal cells express Notch receptors and their ligands, and Notch signalling affects the survival, proliferation, and fate choices of precursors at various stages of haematopoietic development, including whether haematopoietic stem cells self-renew or differentiate, common lymphoid precursors undergo T or B cell differentiation, or monocytes differentiate into macrophage or dendritic cells. These findings suggest that the Notch pathway plays a fundamental role in regulating haematopoietic development.  相似文献   

8.
9.
Cai X  Gong P  Huang Y  Lin Y 《Cell proliferation》2011,44(6):495-507
Notch signalling is a highly conserved intercellular signal transfer mechanism that includes canonical and non-canonical pathways. It regulates differentiation and proliferation of stem/progenitor cells by means of para-inducing effects. Expression and activation of Notch signalling factors (receptors and ligands) are critical not only for development of the dental germ but also for regeneration of injured tissue associated with mature teeth. Notch signalling plays key roles in differentiation of odontoblasts and osteoblasts, calcification of tooth hard tissue, formation of cusp patterns and generation of tooth roots. After tooth eruption, Notch signalling can also be triggered in dental stem cells of the pulp, where it induces them to differentiate into odontoblasts, thus generating fresh dentine tissue. Other signalling pathways, such as TGFβ, NF-κB, Wnt, Fgf and Shh also interact with Notch signalling during tooth development.  相似文献   

10.
Signals delivered via Notch and its ligands Delta and Serrate control developmental choices made by individual cells according to the states of their immediate neighbours. Lateral inhibition mediated by Notch governs neurogenesis. In the inner ear, it generates fine-grained patterns of contrasting cell types. In stem-cell systems, it may regulate the decision to differentiate. Notch signalling can create specialised cells at gene expression boundaries, as at the limb-bud apex. It is crucial for segmentation of the mesoderm into somites, for development of skin appendages, and for many other functions that we do not yet understand.  相似文献   

11.
12.
13.
14.
15.
16.
Notch signalling acts in virtually every tissue during the lifetime of metazoans. Recent studies have pointed to multiple roles for Notch in stem cells during quiescence, proliferation, temporal specification, and maintenance of the niche architecture. Skeletal muscle has served as an excellent paradigm to examine these diverse roles as embryonic, foetal, and adult skeletal muscle stem cells have different molecular signatures and functional properties, reflecting their developmental specification during ontology. Notably, Notch signalling has emerged as a major regulator of all muscle stem cells. This review will provide an overview of Notch signalling during myogenic development and postnatally, and underscore the seemingly opposing contextual activities of Notch that have lead to a reassessment of its role in myogenesis.  相似文献   

17.
It is well established that Notch signalling is activated in response to ligand binding through a series of proteolytic cleavages that release the Notch intracellular domain, allowing it to translocate to the nucleus to regulate downstream target gene expression. However there is still much to learn about the mechanisms that can bring about these proteolytic events in the numerous physiological contexts in which signal activation occurs. A number of studies have suggested that endocytosis of Notch contributes to the signal activation process, but the molecular details are unclear and controversial. There is conflicting data as to whether endocytosis of the receptor is essential for ligand-induced signalling or supplements it. Other studies have revealed that Notch can be activated in the endosomal pathway, independently of its ligands, through the activity of Deltex, a Ring-domain Ubiquitin ligase that binds to the Notch intracellular domain. However, it is unclear how the Deltex-activation mechanism relates to that of ligand-induced signalling, or to ectopic Notch signalling brought about by disruption of ESCRT complexes that affect multivesicular body formation. This review will address these issues and argue that the data are best reconciled by proposing distinct activation mechanisms in different cellular locations that contribute to the cellular pool of the soluble Notch intracellular domain. The resulting signalling network may provide developmental robustness to environmental and genetic variation.  相似文献   

18.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

19.
Notch signalling in vertebrate neural development   总被引:7,自引:0,他引:7  
Signals through the Notch receptors are used throughout development to control cellular fate choices. Loss- and gain-of-function studies revealed both the pleiotropic action of the Notch signalling pathway in development and the potential of Notch signals as tools to influence the developmental path of undifferentiated cells. As we review here, Notch signalling affects the development of the nervous system at many different levels. Understanding the complex genetic circuitry that allows Notch signals to affect specific cell fates in a context-specific manner defines the next challenge, especially as such an understanding might have important implications for regenerative medicine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号