首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Reidl  W Boos 《Journal of bacteriology》1991,173(15):4862-4876
Mutants lacking MalK, a subunit of the binding protein-dependent maltose-maltodextrin transport system, constitutively express the maltose genes. A second site mutation in malI abolishes the constitutive expression. The malI gene (at 36 min on the linkage map) codes for a typical repressor protein that is homologous to the Escherichia coli LacI, GalR, or CytR repressor (J. Reidl, K. R?misch, M. Ehrmann, and W. Boos, J. Bacteriol. 171:4888-4899, 1989). We now report that MalI regulates an adjacent and divergently oriented operon containing malX and malY. MalX encodes a protein with a molecular weight of 56,654, and the deduced amino acid sequence of MalX exhibits 34.9% identity to the enzyme II of the phosphototransferase system for glucose (ptsG) and 32.1% identity to the enzyme II for N-acetylglucosamine (nagE). When constitutively expressed, malX can complement a ptsG ptsM double mutant for growth on glucose. Also, a delta malE malT(Con) strain that is unable to grow on maltose due to its maltose transport defect becomes Mal+ after introduction of malI::Tn10 and the plasmid carrying malX. MalX-mediated transport of glucose and maltose is likely to occur by facilitated diffusion. We conclude that malX encodes a phosphotransferase system enzyme II that can recognize glucose and maltose as substrates even though these sugars may not represent the natural substrates of the system. The second gene in the operon, malY, encodes a protein of 43,500 daltons. Its deduced amino acid sequence exhibits weak homology to aminotransferase sequences. The presence of plasmid-encoded MalX alone was sufficient for complementing growth on glucose in a ptsM ptsG glk mutant, and the plasmid-encoded MalY alone was sufficient to abolish the constitutivity of the mal genes in a malK mutant. The overexpression of malY in a strain that is wild type with respect to the maltose genes strongly interferes with growth on maltose. This is not the case in a malT(Con) strain that expresses the mal genes constitutively. We conclude that malY encodes an enzyme that degrades the inducer of the maltose system or prevents its synthesis.  相似文献   

2.
3.
4.
Osmoregulation of the maltose regulon in Escherichia coli.   总被引:17,自引:14,他引:3       下载免费PDF全文
B Bukau  M Ehrmann    W Boos 《Journal of bacteriology》1986,166(3):884-891
The maltose regulon consists of four operons that direct the synthesis of proteins required for the transport and metabolism of maltose and maltodextrins. Expression of the mal genes is induced by maltose and maltodextrins and is dependent on a specific positive regulator, the MalT protein, as well as on the cyclic AMP-catabolite gene activator protein complex. In the absence of an exogenous inducer, expression of the mal regulon was greatly reduced when the osmolarity of the growth medium was high; maltose-induced expression was not affected, and malTc-dependent expression was only weakly affected. Mutants lacking MalK, a cytoplasmic membrane protein required for maltose transport, expressed the remaining mal genes at a high level, presumably because an internal inducer of the mal system accumulated; this expression was also strongly repressed at high osmolarity. The repression of mal regulon expression at high osmolarity was not caused by reduced expression of the malT, envZ, or crp gene or by changes in cellular cyclic AMP levels. In strains carrying mutations in genes encoding amylomaltase (malQ), maltodextrin phosphorylase (malP), amylase (malS), or glycogen (glg), malK mutations still led to elevated expression at low osmolarity. The repression at high osmolarity no longer occurred in malQ mutants, however, provided that glycogen was present.  相似文献   

5.
6.
MalK, the cytoplasmic component of the maltose ABC transporter from Escherichia coli is known to control negatively the activity of MalT, the activator of the maltose regulon, through complex formation. Here we further investigate this regulatory process by monitoring MalT activity and performing fluorescence microscopy analyses under various conditions. We establish that, under physiological conditions, the molecular entity that interacts with MalT is not free MalK, but the maltose transporter, MalFGK(2) , which sequesters MalT to the membrane. Furthermore, we provide compelling evidence that the transporter's ability to bind MalT is not constitutive, but strongly diminished when MalFGK(2) is engaged in sugar transport. Notably, the outward-facing transporter, i.e. the catalytic intermediate, is ineffective in inhibiting MalT compared to the inward-facing state, i.e. the resting form. Analyses of available genetic and structural data suggest how the interaction between one inactive MalT molecule and MalFGK(2) would be sensitive to the transporter state, thereby allowing MalT release upon maltose entrance. A related mechanism may underpin signalling by other ABC transporters.  相似文献   

7.
The maltose regulon consists of several genes encoding proteins involved in the uptake and utilization of maltose and maltodextrins. Five proteins make up a periplasmic binding-protein-dependent active transport system. One of these proteins, MalK, contains an ATP-binding site and is thought to couple the hydrolysis of ATP to the accumulation of substrate. Beside its function in transport, MalK has two additional roles: (i) it negatively regulates mal regulon expression and (ii) it serves as the target for regulation of transport activity by enzyme IIIGlc of the phosphotransferase system. To determine whether the three functions of MalK are separable, we have isolated and characterized three classes of malK mutations. The first type (class I) exhibited constitutive mal gene expression but still allowed normal transport of maltose; the second type (class II) lacked the ability to transport maltose but retained the ability to repress the mal genes. Class I mutations were localized in the last third of the gene, at amino acids 267 (Trp to Gly) and 346 (Gly to Ser). Mutations of class II were found at the positions 137 (Gly to Ala), 140 (delta Gln Arg), and 158 (Asp to Asn). These mutations are near or within the region of MalK that exhibits extensive homology to the B site of an ATP-binding fold. In addition, site-directed mutagenesis was used to add or remove one amino acid in the A site of the ATP-binding fold. Plasmids carrying these mutations also behaved as class II mutants. The third class of malK mutations resulted in resistance to the enzyme IIIGlc-mediated inhibitory effects of alpha-methylglucoside. These mutations did not interfere with the regulatory function of MalK. One of these mutations (exchanging a serine at position 282 for leucine) is located in a short stretch of amino acids that exhibits homology to a sequence in the Escherichia coli Lac permease in which alpha-methylglucoside-resistant mutations have been found.  相似文献   

8.
9.
The regulatory protein Reg1 of Streptomyces lividans (a member of the LacI family) was expressed in Escherichia coli as a translational fusion with the maltose-binding protein (MBP) of E. coli. The purified MBP-Reg1 binds the promoter region of genes of the maltose regulon (amylases, maltose utilization) and that of genes sensitive to catabolite repression (chitinase, xylanase, cellulase). Repeated sequences, in direct or inverted orientation, are involved in these DNA-protein interactions. They are present in all DNA fragments able to bind MBP-Reg1. The nucleotide sequence of the repeats and the variability of the spacing between them suggest a similarity in DNA-binding activity between Reg1 and CytR, another member of the LacI family.  相似文献   

10.
11.
12.
The mal regulon of Escherichia coli comprises a large family of genes whose function is the metabolism of linear maltooligosaccharides. Five gene products are required for the active accumulation of maltodextrins as large as maltoheptaose. Two cytoplasmic gene products are necessary and sufficient for the intracellular catabolism of these sugars. Two newly discovered enzymes have the capacity to metabolize these sugars but are not essential for their catabolism in wild-type cells. A single regulatory protein, MalT, positively regulates the expression of all of these genes in response to intracellular inducers, one of which has been identified as maltotriose. In the course of studying the mechanism of the transport system, we have placed the structural gene for one of the transport proteins, MalK, under the control of the Ptrc promoter to produce large amounts of this protein. We found that although high-level expression of MalK was not detrimental to E. coli, the increased amount of MalK decreased the basal-level expression of the mal regulon and prevented induction of the mal system even in the presence of external maltooligosaccharides. Constitutive mutants in which MalT does not depend on the presence of the internal inducer(s) were unaffected by the increased levels of the MalK protein. These results are consistent with the idea that MalK protein somehow interferes with the activity of the MalT protein. Different models for the regulatory function of MalK are discussed.  相似文献   

13.
14.
15.
《FEMS microbiology letters》1998,165(1):193-200
Deletion of a region of DNA 5′ to a previously characterised malQ gene of Clostridium butyricum resulted in increased production of the enzyme activity encoded by malQ, 4-α-glucanotransferase. Nucleotide sequence analysis revealed the presence of an open reading frame capable of encoding a protein of 335 amino acids. This protein was found to share 33% amino acid sequence identity with the Bacillus subtilis CcpA (catabolite control protein) repressor, 28% identity with the Streptomyces coelicolor MalR repressor, and 30%, 25%, and 21% amino acid identity with the Escherichia coli repressors GalR, LacI and MalI, respectively. The amino-terminal domain was predicted to be able to form a helix-turn-helix structure, and shared highest similarity with the equivalent functional domain from the E. coli LacI repressor. Interruption of malR by the generation of a frameshift mutation led to a 10-fold increase in MalQ activity. These data suggest that the identified open reading frame encodes a repressor of the C. butyricum malQ gene, and of the adjacent malP gene. The gene has, therefore, been designated malR, and its encoded gene product MalR.  相似文献   

16.
17.
18.
19.
We report the cloning, sequencing, and expression of malK encoding the ATP-hydrolyzing subunit of the maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis. According to the deduced amino acid sequence, MalK consists of 372 amino acids with a calculated molecular weight of 41,787. It shows 47% identity with the MalK protein of Escherichia coli and high sequence conservation in important regions. C-terminal His-tagged MalK was purified. The soluble protein appeared monomeric by molecular sieve chromatography and showed ATPase activity. Enzymatic activity was highest at 80 degrees C with a Km of 150 microM and a Vmax of 0.55 micromol of ATP hydrolyzed/min/mg of protein. ADP was not a substrate but a competitive inhibitor (Ki 230 microM). GTP and CTP were also hydrolyzed. ATPase activity was inhibited by N-ethylmaleimide but not by vanadate. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the ABC transporters in these two phylogenetic branches.  相似文献   

20.
We have isolated a hybrid gene, composed of the first 455 nucleotides of hisP and nucleotides 275-1107 of malK, the genes coding for the nucleotide-binding components of the high-affinity transport systems for histidine and maltose in Salmonella typhimurium, respectively. The fusion had occurred by recombination within 11 homologous base pairs located between the two DNA fragments. In the chimeric protein peptidic motifs A and B, proposed to be part of the nucleotide-binding fold, originate from HisP and MalK, respectively. Plasmid pES42-39, harbouring the hybrid gene, was shown to complement only a malK mutation but failed to complement a hisP deletion mutation. The chimeric protein was identified by immunoblotting as a protein with an apparent molecular mass of 49kDa. Removal of the C-terminal 77 amino acid residues from the chimeric protein resulted in the loss of function in transport. In contrast, 51 amino acid residues could be removed from the C-terminus of wild-type MalK without any effect. Upon overproduction the chimeric protein, as wild-type MalK, inhibited expression of the malB regulon. However, both truncated proteins, when overproduced, did not exhibit this activity. Based on these results, a tentative model of the functional domains of MalK is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号