首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.  相似文献   

2.
Phosphorylation-dependent ubiquitination and degradation of the IFNAR1 chain of type I interferon (IFN) receptor is a robust and specific mechanism that limits the magnitude and duration of IFNα/β signaling. Besides the ligand-inducible IFNAR1 degradation, the existence of an "inside-out" signaling that accelerates IFNAR1 turnover in the cells undergoing the endoplasmic reticulum (ER) stress and activated unfolded protein responses has been recently described. The latter pathway does not require either presence of ligands (IFNα/β) or catalytic activity of Janus kinases (JAK). Instead, this pathway relies on activation of the PKR-like ER kinase (PERK) and ensuing specific priming phosphorylation of IFNAR1. Here, we describe studies that identify the stress activated p38 protein kinase as an important regulator of IFNAR1 that acts downstream of PERK. Results of the experiments using pharmacologic p38 kinase inhibitors, RNA interference approach, and cells from p38α knock-out mice suggest that p38 kinase activity is required for priming phosphorylation of IFNAR1 in cells undergoing unfolded protein response. We further demonstrate an important role of p38 kinase in the ligand-independent stimulation of IFNAR1 ubiquitination and degradation and ensuing attenuation of IFNα/β signaling and anti-viral defenses. We discuss the distinct importance of p38 kinase in regulating the overall responses to type I IFN in cells that have been already exposed to IFNα/β versus those cells that are yet to encounter these cytokines.  相似文献   

3.
An ability to sense pathogens by a number of specialized cell types including the dendritic cells plays a central role in host's defenses. Activation of these cells through the stimulation of the pathogen-recognition receptors induces the production of a number of cytokines including Type I interferons (IFNs) that mediate the diverse mechanisms of innate immunity. Type I IFNs interact with the Type I IFN receptor, composed of IFNAR1 and IFNAR2 chains, to mount the host defense responses. However, at the same time, Type I IFNs elicit potent anti-proliferative and pro-apoptotic effects that could be detrimental for IFN-producing cells. Here, we report that the activation of p38 kinase in response to pathogen-recognition receptors stimulation results in a series of phosphorylation events within the IFNAR1 chain of the Type I IFN receptor. This phosphorylation promotes IFNAR1 ubiquitination and accelerates the proteolytic turnover of this receptor leading to an attenuation of Type I IFN signaling and the protection of activated dendritic cells from the cytotoxic effects of autocrine or paracrine Type I IFN. In this paper we discuss a potential role of this mechanism in regulating the processes of innate immunity.  相似文献   

4.
Ligand-specific negative regulation of cytokine-induced signaling relies on down regulation of the cytokine receptors. Down regulation of the IFNAR1 sub-unit of the Type I interferon (IFN) receptor proceeds via lysosomal receptor proteolysis, which is triggered by ubiquitination that depends on IFNAR1 serine phosphorylation. While IFN-inducible phosphorylation, ubiquitination, and degradation requires the catalytic activity of the Tyk2 Janus kinase, here we found the ligand- and Tyk2-independent pathway that promotes IFNAR1 phosphorylation, ubiquitination, and degradation when IFNAR1 is expressed at high levels. A major cellular kinase activity that is responsible for IFNAR1 phosphorylation in vitro does not depend on either ligand or Tyk2 activity. Inhibition of ligand-independent IFNAR1 degradation suppresses cell proliferation. We discuss the signaling events that might lead to ubiquitination and degradation of IFNAR1 via ligand-dependent and independent pathways and their potential physiologic significance.  相似文献   

5.
Type I interferons (IFN) are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK) cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR) signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP) compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.  相似文献   

6.
7.
8.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

9.
Despite multimodal treatment approaches including surgery, radiotherapy and chemotherapy, the median survival for patients with glioblastoma remains in the range of one year and thus poor. Type I interferons (IFN) are involved in immune responses to viral infection and exhibit anti-tumor activity in certain cancers.Here we explored the biological relevance of constitutive type I IFN signaling in murine glioma models in vitro and in vivo. CT-2A, GL-261, SMA-497, SMA-540 and SMA-560 murine glioma cells expressed IFN type I receptors IFNAR1 and IFNAR2 and were responsive to exogenous IFN stimulation. CRISPR/Cas9-mediated deletion of IFNAR1 decreased the baseline expression of type I IFN response genes in GL-261 cells, but neither in CT-2A nor in SMA-560 cells. IFNAR1 deletion slowed growth in GL-261 and SMA-560, but not in CT-2A cells. However, only the growth of IFNAR1-depleted GL-261 tumors and not that of SMA-560 tumors was delayed in vivo upon orthotopic tumor cell implantation into syngeneic mice. This survival gain was no longer detected when the IFNAR1-depleted GL-261 cells were inoculated into IFNAR1-deficient mice. Altogether these data suggest that constitutive type I IFN signaling in gliomas may be pro-tumorigenic, but only in a microenvironment that is proficient for type I IFN signaling in the host.  相似文献   

10.
Phosphorylation-dependent ubiquitination and ensuing down-regulation and lysosomal degradation of the interferon α/β receptor chain 1 (IFNAR1) of the receptor for Type I interferons play important roles in limiting the cellular responses to these cytokines. These events could be stimulated either by the ligands (in a Janus kinase-dependent manner) or by unfolded protein response (UPR) inducers including viral infection (in a manner dependent on the activity of pancreatic endoplasmic reticulum kinase). Both ligand-dependent and -independent pathways converge on phosphorylation of Ser535 within the IFNAR1 degron leading to recruitment of β-Trcp E3 ubiquitin ligase and concomitant ubiquitination and degradation. Casein kinase 1α (CK1α) was shown to directly phosphorylate Ser535 within the ligand-independent pathway. Yet given the constitutive activity of CK1α, it remained unclear how this pathway is stimulated by UPR. Here we report that induction of UPR promotes the phosphorylation of a proximal residue, Ser532, in a pancreatic endoplasmic reticulum kinase-dependent manner. This serine serves as a priming site that promotes subsequent phosphorylation of IFNAR1 within its degron by CK1α. These events play an important role in regulating ubiquitination and degradation of IFNAR1 as well as the extent of Type I interferon signaling.  相似文献   

11.
12.
Ubiquitination, endocytosis, and lysosomal degradation of the IFNAR1 (interferon alpha receptor 1) subunit of the type I interferon (IFN) receptor is mediated by the SCFbeta-Trcp (Skp1-Cullin1-F-box protein beta transducin repeat-containing protein) E3 ubiquitin ligase in a phosphorylation-dependent manner. In addition, stability of IFNAR1 is regulated by its binding to Tyk2 kinase. Here we characterize the determinants of IFNAR1 ubiquitination and degradation. We found that the integrity of two Ser residues at positions 535 and 539 within the specific destruction motif present in the cytoplasmic tail of IFNAR1 is essential for the ability of IFNAR1 to recruit beta-Trcp as well as to undergo efficient ubiquitination and degradation. Using an antibody that specifically recognizes IFNAR1 phosphorylated on Ser535 we found that IFNAR1 is phosphorylated on this residue in cells. This phosphorylation is promoted by treatment of cells with IFNalpha. Although the cytoplasmic tail of IFNAR1 contains seven Lys residues that could function as potential ubiquitin acceptor sites, we found that only three (Lys501, Lys525, and Lys526), all located proximal to the destruction motif, are essential for ubiquitination and degradation of IFNAR1. Expression of Tyk2 stabilized IFNAR1 in a manner that was dependent neither on its binding to beta-Trcp nor IFNAR1 ubiquitination. We discuss the complexities and specifics of the ubiquitination and degradation of IFNAR1, which is a beta-Trcp substrate that undergoes degradation via a lysosomal pathway.  相似文献   

13.
ITAM-coupled receptors play an essential role in regulating macrophage activation and function by cross-regulating signaling from heterologous receptors. We investigated mechanisms by which ITAM-associated receptors inhibit type I IFN (IFN-α/β) signaling in primary human macrophages and tested the effects of simultaneous ligation of ITAM-associated receptors and TLR4 on TLR4-induced Jak-STAT signaling that is mediated by autocrine IFN-β. Preligation of ITAM-coupled β2 integrins and FcγRs inhibited proximal signaling by the type I IFN receptor IFNAR. Cross-inhibition of IFNAR signaling by β2 integrins resulted in decreased Jak1 activation and was mediated by partial downregulation of the IFNAR1 subunit and MAPK-dependent induction of USP18, which blocks the association of Jak1 with IFNAR2. Simultaneous engagement of ITAM-coupled β2 integrins or Dectin-1 with TLR4 did not affect TLR4-induced direct activation of inflammatory target genes such as TNF or IL6 but abrogated subsequent induction of IFN response genes that is mediated by autocrine IFN-β signaling. Type I IFNs promote macrophage death postinfection by Listeria monocytogenes. Consequently, attenuation of IFN responses by β2 integrins protected primary human macrophages from L. monocytogenes-induced apoptosis. These results provide a mechanism for cross-inhibition of type I IFN signaling by ITAM-coupled β2 integrins and demonstrate that ITAM signaling qualitatively modulates macrophage responses to pathogen-associated molecular patterns and pathogens by selectively suppressing IFN responses.  相似文献   

14.
15.
16.
A method for analyzing ligand–receptor binding kinetics is described, which is based on an engineered FC domain (FChk) that forms a covalent heterodimer. To validate the system, the type I IFN receptors (IFNAR1 and IFNAR2) were expressed as IFNAR1‐FChk, IFNAR2‐FCkh, and IFNAR1/IFNAR2‐FChk fusion proteins. Surface plasmon resonance (SPR) analysis of binary IFNα2a/IFNAR interactions confirmed prior affinity measurements, while the affinity of the IFNα2a/IFNAR1/IFNAR2‐FChk interaction reproduced the affinity of IFNα2a binding to living cells. In cellular assays, IFNAR1/IFNAR2‐FChk potently neutralized IFNα2a bioactivity with an inhibitory concentration equivalent to the KD measured by SPR. These studies suggest that FChk provides a simple reagent to evaluate the binding kinetics of multiple ligand–receptor signaling systems that control cell growth, development, and immunity.  相似文献   

17.
Type I Interferons (IFNs) are important cytokines for innate immunity against viruses and cancer. Sixteen human type I IFN variants signal through the same cell-surface receptors, IFNAR1 and IFNAR2, yet they can evoke markedly different physiological effects. The crystal structures of two human type I IFN ternary signaling complexes containing IFNα2 and IFNω reveal recognition modes and heterotrimeric architectures that are unique among the cytokine receptor superfamily but conserved between different type I IFNs. Receptor-ligand cross-reactivity is enabled by conserved receptor-ligand "anchor points" interspersed among ligand-specific interactions that "tune" the relative IFN-binding affinities, in an apparent extracellular "ligand proofreading" mechanism that modulates biological activity. Functional differences between IFNs are linked to their respective receptor recognition chemistries, in concert with a ligand-induced conformational change in IFNAR1, that collectively control signal initiation and complex stability, ultimately regulating differential STAT phosphorylation profiles, receptor internalization rates, and downstream gene expression patterns.  相似文献   

18.
人Ⅰ型干扰素(type I interferon, IFN-I)的诱生和应答在机体抗病毒固有免疫中发挥重要作用。但病毒多可逃逸宿主此类抗病毒免疫,导致感染和致病。Ⅰ型干扰素受体(interferon alpha receptor, IFNAR)是识别及结合IFN-I的一种跨细胞膜蛋白受体,其IFNAR1亚型在干扰素发挥抗病毒效应的启动阶段发挥关键作用;本文从IFNAR1蛋白质的表达、降解及其功能等方面,概述病毒以IFNAR1为靶点负调控IFN-I的抗病毒机制,以期为该领域基础研究和临床抗病毒策略提供有益的参考依据。  相似文献   

19.
20.
A nuclear localization sequence (NLS) in the type II interferon (IFN) IFN gamma, which is responsible for the nuclear translocation of both the ligand and the alpha-subunit (IFNGR1) of the receptor complex, has previously been characterized and its role in signaling examined in detail. We have now identified an NLS in the type I IFN receptor (IFNAR) common subunit IFNAR1 from humans and show that the human IFNAR1 subunit can translocate to the nucleus following human IFN beta stimulation. An NLS in human IFNAR1 is located in the extracellular domain of IFNAR1 within the sequence (382)RKIIEKKT (numbered for the precursor form). Nuclear import by the NLS functions in a conventional fashion requiring cytosolic import factors, is energy-dependent and inhibited by the prototypical NLS of the SV40 large T-antigen. These studies provide a mechanism for nuclear import of IFNAR1, as well as for type I IFN ligands, and a starting point for studying an alternate role for IFNAR1 in nuclear signaling within the type I IFN system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号