共查询到20条相似文献,搜索用时 0 毫秒
1.
Davis JS Darcy CJ Yeo TW Jones C McNeil YR Stephens DP Celermajer DS Anstey NM 《PloS one》2011,6(2):e17260
Background
Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelial dysfunction, but the role of ADMA in acute inflammatory states is less well defined.Methods and Results
In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digital microvascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2–4 days later. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baseline plasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45–103]) than in hospital controls (143 [123–166], p<0.0001) and correlated with microvascular reactivity (r = 0.34, R2 = 0.12, p = 0.02). Baseline plasma ADMA was independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile (≥0.66 µmol/L) = 20.8 [2.2–195.0], p = 0.008), and was independently correlated with severity of organ failure. Increase in ADMA over time correlated with increase in organ failure and decrease in microvascular reactivity.Conclusions
Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potential mechanism linking increased plasma ADMA with organ failure and death in sepsis. 相似文献2.
3.
Raveendran M Wang J Senthil D Wang J Utama B Shen Y Dudley D Zhang Y Wang XL 《FEBS letters》2005,579(3):733-740
Cigarette-induced endothelial dysfunction could be an early mediator of atherosclerosis. In this study, we explored the mechanisms of cigarette smoke extract (CSE)-induced human aortic endothelial cells (HAEC) apoptosis. We found that 10-65% of HAECs underwent apoptotic changes when HAECs were exposed to 0.001-0.02 cigarette equivalent unit of CSE for 4 h. CSE activated the caspases-3 and 8, the p38 MAP kinase and stress activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK). Specific inhibitors of p38 MAP or SAPK/JNK reduced CSE-induced caspase activation. We further showed that eNOS pre-activation by L-arginine reduced endothelial apoptosis from 65% to 5%; and eNOS inhibition by N-omega-nitro-L-arginine methyl ester accentuated CSE-induced endothelial apoptosis. We suggest that appropriate endogenous NO production may be an important protective mechanism against smoking-induced endothelial damage. 相似文献
4.
Gamboa A Okamoto LE Diedrich A Choi L Robertson D Farley G Paranjape S Biaggioni I 《American journal of physiology. Heart and circulatory physiology》2012,302(7):H1438-H1443
The purpose of this study was to determine if tonic restrain of blood pressure by nitric oxide (NO) is impaired early in the development of hypertension. Impaired NO function is thought to contribute to hypertension, but it is not clear if this is explained by direct effects of NO on vascular tone or indirect modulation of sympathetic activity. We determined the blood pressure effect of NO synthase inhibition with N(ω)-monomethyl-l-arginine (L-NMMA) during autonomic blockade with trimethaphan to eliminate baroreflex buffering and NO modulation of autonomic tone. In this setting, impaired NO modulation of vascular tone would be reflected as a blunted pressor response to L-NMMA. We enrolled a total of 66 subjects (39 ± 1.3 yr old, 30 females), 20 normotensives, 20 prehypertensives (blood pressure between 120/80 and 140/90 mmHg), 17 hypertensives, and 9 smokers (included as "positive" controls of impaired NO function). Trimethaphan normalized blood pressure in hypertensives, suggesting increased sympathetic tone contributing to hypertension. In contrast, L-NMMA produced similar increases in systolic blood pressure in normal, prehypertensive, and hypertensive subjects (31 ± 2, 32 ± 2, and 30 ± 3 mmHg, respectively), whereas the response of smokers was blunted (16 ± 5 mmHg, P = 0.012). Our results suggest that sympathetic activity plays a role in hypertension. NO tonically restrains blood pressure by ~30 mmHg, but we found no evidence of impaired modulation by NO of vascular tone contributing to the early development of hypertension. If NO deficiency contributes to hypertension, it is likely to be through its modulation of the autonomic nervous system, which was excluded in this study. 相似文献
5.
Neri S Signorelli S Pulvirenti D Mauceri B Cilio D Bordonaro F Abate G Interlandi D Misseri M Ignaccolo L Savastano M Azzolina R Grillo C Messina A Serra A Tsami A 《Free radical research》2006,40(6):615-618
To assess whether pathogenic endothelial dysfunction is involved in acute idiopathic tinnitus we enrolled 44 patients and 25 healthy volunteers. In blood from the internal jugular vein and brachial vein we determined malonaldehyde, 4-hydroxynonenal, myeloperoxidase, glutathione peroxidase, nitric oxide, L-arginine and L-ornitine, thrombomodulin (TM) and von Willebrand factor (vWF) activity during tinnitus and asymptomatic period. Higher plasma concentrations of oxidative markers and L-arginine, and lower nitric oxide and L-ornitine levels were observed in jugular blood of patients with tinnitus, there being a significant difference between brachial and jugular veins. TM and vWF activity were significantly higher in patients' jugular blood than in brachial blood. Our results suggest oxidant, TM, vWF activity production are increased and nitric oxide production reduced in brain circulation reflux blood of patients with acute tinnitus. These conditions are able to cause a general cerebro-vascular endothelial dysfunction, which in turn induce a dysfunction of microcirculation in the inner ear. 相似文献
6.
7.
Nitric oxide (NO) is an important signaling molecule modulating diverse processes such as vasodilation, neurotransmission, long-term potentiation, and immune responses. The endothelium contributes a significant fraction of NO from endothelial NO synthase (eNOS). The objective of this work was to analyze the role of eNOS in the modulation of oxygen supply to the tissues and in adaptation to maintain oxygenation uncompromised. Oxygen delivery and consumption were measured in the microcirculation of homozygous mutant endothelial nitric oxide synthase-deficient (eNOS(-/-)) and wild-type mice. Animals were implanted with a dorsal window chamber, allowing us to assess the intact microvascular system. Hemodynamics and oxygen tension were assessed in the microcirculation of conscious animals. The eNOS(-/-) mice had significantly higher blood pressure and lower heart rate (146 +/- 8 mm Hg, 401 +/- 17 bpm) than wild type (127 +/- 6 mm Hg, 428 +/- 20 bpm). Microvascular hemodynamic parameters were not significantly different between groups. The eNOS(-/-) animals delivered less oxygen to the microcirculation and released more oxygen to the tissue; both differences were statistically significant compared to wild type. The arteriolar vessel wall oxygen gradient, a measure of vascular smooth muscle cells and endothelial cell wall oxygen consumption, was significantly lower for eNOS(-/-) than for wild type, suggesting that the inhibition of eNOS is an antianoxia (oxygen sparing) mechanism. Finally, the findings of the study support the argument that NO availability limits oxygen consumption by the tissue. 相似文献
8.
Nitric oxide originating from the endothelial cells of the vessel wall is essential for the vascular system. It is produced by the enzyme endothelial nitric oxide synthase (eNOS). Cellular eNOS activity is affected by changes in eNOS synthesis. To address whether degradation also contributes to eNOS activity, the effect of proteasome inhibitors on eNOS-mediated NO synthesis was studied in the microvascular endothelial cell line bEnd.3 and in cultured primary aortic endothelial cells. Surprisingly, agonist-induced increases in eNOS activity were reduced to 42 and 50% in the presence of the proteasome inhibiting drugs MG132 and clasto-lactacystin-beta-lactone, respectively (P < 0.01). The decrease in activity occurred within 1 hour of drug treatment and was not accompanied by a change in intracellular levels of either eNOS or its inhibitor caveolin-1. Taken together, these data may indicate that eNOS is regulated by an interacting protein, different from caveolin-1, that inhibits its activity and is rapidly degraded by the proteasome in the presence of eNOS agonists. 相似文献
9.
Giraldez RR Panda A Zweier JL 《American journal of physiology. Heart and circulatory physiology》2000,278(6):H2020-H2027
Whereas altered nitric oxide (NO.) formation from endothelial nitric oxide synthase (NOS) causes impaired vascular reactivity in a number of cardiovascular diseases, questions remain regarding how endothelial injury results in impaired NO. formation. It is unknown if loss of NOS expression or activity is required or if other factors are involved. Detergent treatment has been used to induce endothelial dysfunction. Therefore, NOS and NO. synthesis were characterized in a rat heart model of endothelial injury and dysfunction induced by the detergent Triton X-100. Cardiac NO. formation was directly measured by electron paramagnetic resonance spectroscopy. NOS activity was determined by the L-[(14)C]arginine conversion assay. Western blots and immunohistology were applied to define the amounts of NOS present in heart tissue before and after Triton treatment. Immunoelectron microscopy was performed to assess intracellular NOS distribution. A short bolus of Triton X-100, 0.25%, abolished responses to histamine and calcium ionophore while preserving response to nitroprusside. Complete blockade of NO. generation occurred after Triton treatment, but NOS activity assayed with addition of exogenous substrate and cofactors was unchanged, and identical 135-kDa NOS bands were seen on Western blots, indicating that NOS was not removed from the heart or structurally damaged by Triton. Immunohistochemistry showed no change in NOS localization after Triton treatment, and immunoelectron microscopy revealed similar NOS distribution in the plasma membrane and intracellular membranes. These results demonstrate that the endothelial dysfunction was due to decreased NO. synthesis but was not caused by loss or denaturation of NOS. Thus endothelial dysfunction due to mild endothelial membrane injury may occur in the presence of active NOS and is triggered by loss of NOS substrates or cofactors. 相似文献
10.
Araújo AV Ferezin CZ Pereira Ade C Rodrigues GJ Grando MD Bonaventura D Bendhack LM 《Nitric oxide》2012,27(1):59-66
Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1α) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS. 相似文献
11.
Vascular endothelial growth factor (VEGF) is an endothelium-specific secreted protein that induces vasodilation and increases endothelial release of nitric oxide (NO). NO is also reported to modulate leukocyte-endothelium interaction. Therefore, we hypothesized that VEGF might inhibit leukocyte-endothelium interaction via increased release of NO from the vascular endothelium. We used intravital microscopy of the rat mesenteric microcirculation to measure leukocyte-endothelium interactions 2, 4, and 24 h after systemic administration of VEGF to the rat (120 microg/kg, i.v., bolus). Superfusion of the rat mesentery with either 0.5 U/ml thrombin or 50 microM L-NAME consistently increased the number of rolling, adhering, and transmigrated leukocytes (P<0.01 vs. control mesenteries superfused with Krebs-Henseleit buffer). At 4 and 24 h posttreatment, VEGF significantly attenuated thrombin-induced and L-NAME-induced leukocyte rolling, adherence, and transmigration in rat mesenteric venules. In addition, adherence of isolated rat PMNs to thrombin-stimulated mesenteric artery segments in vitro was significantly reduced in mesenteric arteries isolated from VEGF-treated rats (P<0.001 vs. control rats). Direct measurement of NO demonstrated a threefold increase in basal NO release from aortic tissue of rats injected with VEGF, at 4 and 24 h posttreatment (P<0. 01 vs. aortic tissue from control rats). Finally, systemic administration of VEGF to ecNOS-deficient mice failed to inhibit leukocyte-endothelium interactions observed in peri-intestinal venules. We concluded that VEGF is a potent inhibitor of leukocyte-endothelium interaction, and this effect is specifically correlated to augmentation of NO release from the vascular endothelium.--Scalia, R., Booth, G., Lefer, D. J. Vascular endothelial growth factor attenuates leukocyte-endothelium interaction during acute endothelial dysfunction: essential role of endothelium-derived nitric oxide. 相似文献
12.
David-Dufilho M Privat C Brunet A Richard MJ Devynck J Devynck MA 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》2001,324(1):13-21
The bioavailability of endothelial nitric oxide (NO) is regulated by transition metals but their mechanisms of action on NO synthesis and degradation are not clearly understood. Using differential pulse amperometry and NO microelectrodes, local NO concentration was measured at the surface of cultured human umbilical vein endothelial cells (HUVECs) stimulated by histamine or thrombin in the presence of transition metal chelators. The agonist-activated NO release required both extracellular Ca2+ and transition metals. In the presence of 1 mM external Ca2+, a low concentration of EGTA (5 microM) inhibited by 40% the NO release from stimulated HUVECs. In the presence of extracellular L-arginine, the inhibitory effect of EGTA was even more marked and, in its absence, it was suppressed by adding exogenous superoxide dismutase. The decrease in NO release induced by the copper chelators, cuprizone and DETC, suggests that extracellular traces of Cu2+ could regulate NO availability. 相似文献
13.
Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. 总被引:12,自引:0,他引:12
Nitric oxide (NO) plays an important role in the pathogenesis of neuronal injury during cerebral ischemia. The endothelial and neuronal isoforms of nitric oxide synthase (eNOS, nNOS) generate NO, but NO generation from these two isoforms can have opposing roles in the process of ischemic injury. While increased NO production from nNOS in neurons can cause neuronal injury, endothelial NO production from eNOS can decrease ischemic injury by inducing vasodilation. However, the relative magnitude and time course of NO generation from each isoform during cerebral ischemia has not been previously determined. Therefore, electron paramagnetic resonance spectroscopy was applied to directly detect NO in the brain of mice in the basal state and following global cerebral ischemia induced by cardiac arrest. The relative amount of NO derived from eNOS and nNOS was accessed using transgenic eNOS(-/-) or nNOS(-/-) mice and matched wild-type control mice. NO was trapped using Fe(II)-diethyldithiocarbamate. In wild-type mice, only small NO signals were seen prior to ischemia, but after 10 to 20 min of ischemia the signals increased more than 4-fold. This NO generation was inhibited more than 70% by NOS inhibition. In either nNOS(-/-) or eNOS(-/-) mice before ischemia, NO generation was decreased about 50% compared to that in wild-type mice. Following the onset of ischemia a rapid increase in NO occurred in nNOS(-/-) mice peaking after only 10 min. The production of NO in the eNOS(-/-) mice paralleled that in the wild type with a progressive increase over 20 min, suggesting progressive accumulation of NO from nNOS following the onset of ischemia. NOS activity measurements demonstrated that eNOS(-/-) and nNOS(-/-) brains had 90% and < 10%, respectively, of the activity measured in wild type. Thus, while eNOS contributes only a fraction of total brain NOS activity, during the early minutes of cerebral ischemia prominent NO generation from this isoform occurs, confirming its importance in modulating the process of ischemic injury. 相似文献
14.
Cyclopentenylcytosine (CPEC) is cytotoxic to HT-29 cells in vitro and in vivo. Treatment with CPEC resulted in sensitizing HT-29 cells to cisplatin (CDDP), as evidenced by synergistic cytotoxicity. CPEC exhibits potent cytotoxicity to HT-29 cells in vitro, 2 and 24 h exposure providing an LC50 of 2.4 and 0.46 microM, respectively. Exposure of HT-29 cells to CDDP for 2 h resulted in an LC50 of 26 microM. Treatment of HT-29 cells with 1.0 or 1.25 microM CPEC and then incubating with CDDP showed synergistic cytotoxicity. Lesser synergy at very high concentrations of CPEC was demonstrated when HT-29 cells were first exposed to CDDP and then incubated with CPEC. Combination index calculations showed synergistic cytotoxicity in HT-29 cells when CPEC was combined with CDDP. Synergistic antitumor activity was demonstrable in vivo in mice transplanted with HT-29 tumor when treated with a combination of CPEC and CDDP without undue toxicity, since no excessive loss in mouse body weight or overt pathology was observed. CPEC had no influence on the total DNA adduct formation and CDDP did not affect the intracellular levels of CPEC or its metabolites, suggesting that enhanced CDDP cytotoxicity resulted from a step subsequent to excision of platinum-cross-linked DNA. These studies support a new approach for augmenting cytotoxic effect of CPEC with CDDP in treating human colon carcinoma. 相似文献
15.
L-Ascorbic acid potentiates nitric oxide synthesis in endothelial cells 总被引:14,自引:0,他引:14
Heller R Münscher-Paulig F Gräbner R Till U 《The Journal of biological chemistry》1999,274(12):8254-8260
Ascorbic acid has been shown to enhance impaired endothelium-dependent vasodilation in patients with atherosclerosis by a mechanism that is thought to involve protection of nitric oxide (NO) from inactivation by free oxygen radicals. The present study in human endothelial cells from umbilical veins and coronary arteries investigates whether L-ascorbic acid additionally affects cellular NO synthesis. Endothelial cells were incubated for 24 h with 0.1-100 microM ascorbic acid and were subsequently stimulated for 15 min with ionomycin (2 microM) or thrombin (1 unit/ml) in the absence of extracellular ascorbate. Ascorbate pretreatment led to a 3-fold increase of the cellular production of NO measured as the formation of its co-product citrulline and as the accumulation of its effector molecule cGMP. The effect was saturated at 100 microM and followed a similar kinetics as seen for the uptake of ascorbate into the cells. The investigation of the precursor molecule L-gulonolactone and of different ascorbic acid derivatives suggests that the enediol structure of ascorbate is essential for its effect on NO synthesis. Ascorbic acid did not induce the expression of the NO synthase (NOS) protein nor enhance the uptake of the NOS substrate L-arginine into endothelial cells. The ascorbic acid effect was minimal when the citrulline formation was measured in cell lysates from ascorbate-pretreated cells in the presence of known cofactors for NOS activity. However, when the cofactor tetrahydrobiopterin was omitted from the assay, a similar potentiating effect of ascorbate pretreatment as seen in intact cells was demonstrated, suggesting that ascorbic acid may either enhance the availability of tetrahydrobiopterin or increase its affinity for the endothelial NOS. Our data suggest that intracellular ascorbic acid enhances NO synthesis in endothelial cells and that this may explain, in part, the beneficial vascular effects of ascorbic acid. 相似文献
16.
17.
Noguchi K Hamadate N Matsuzaki T Sakanashi M Nakasone J Uchida T Arakaki K Kubota H Ishiuchi S Masuzaki H Sugahara K Ohya Y Sakanashi M Tsutsui M 《American journal of physiology. Heart and circulatory physiology》2011,301(3):H721-H729
An elevation of oxidized forms of tetrahydrobiopterin (BH(4)), especially dihydrobiopterin (BH(2)), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH(2) in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH(2) concentration causes endothelial dysfunction in rats. To increase vascular BH(2) levels, the BH(2) precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH(2) to BH(4). MTX/SEP treatment did not significantly affect aortic BH(4) levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH(2) levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH(4) levels but decreased the BH(4)-to-BH(2) ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations (P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD (P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH(2) causes eNOS dysfunction in vivo even in the absence of BH(4) deficiency, demonstrating a novel insight into the regulation of endothelial function. 相似文献
18.
Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C 总被引:3,自引:0,他引:3
Pricci F Leto G Amadio L Iacobini C Cordone S Catalano S Zicari A Sorcini M Di Mario U Pugliese G 《Free radical biology & medicine》2003,35(6):683-694
Reactive oxygen species (ROS) formation plays a major role in diabetes-induced endothelial dysfunction, though the molecular mechanism(s) involved and the contribution of nitric oxide (NO) are still unclear. This study using bovine retinal endothelial cells was aimed at assessing (i) the role of oxygen-dependent vs. NO-dependent oxidative stress in the endothelial cell permeability alterations induced by the diabetic milieu and (ii) whether protein kinase C (PKC) activation ultimately mediates these changes. Superoxide, lipid peroxide, and PKC activity were higher under high glucose (HG) vs. normal glucose throughout the 30 d period. Nitrite/nitrate and endothelial NO synthase levels increased at 1 d and decreased thereafter. Changes in monolayer permeability to 125I-BSA induced by 1 or 30 d incubation in HG or exposure to advanced glycosylation endproduct were reduced by treatment with antioxidants or PKC inhibitors, whereas NO blockade prevented only the effect of 1 d HG. HG-induced changes were mimicked by a PKC activator, a superoxide generating system, an NO and superoxide donor, or peroxynitrite (attenuated by PKC inhibition), but not a NO donor. The short-term effect of HG depends on a combined oxidative and nitrosative stress with peroxynitrite formation, whereas the long-term effect is related to ROS generation; in both cases, PKC ultimately mediates permeability changes. 相似文献
19.
Cale JM Bird IM 《American journal of physiology. Heart and circulatory physiology》2006,290(4):H1433-H1445
Pregnancy enhanced nitric oxide production by uterine artery endothelial cells (UAEC) is the result of reprogramming of both Ca(2+) and kinase signaling pathways. Using UAEC derived from pregnant ewes (P-UAEC), as well as COS-7 cells transiently expressing ovine endothelial nitric oxide synthase (eNOS), we investigated the role of phosphorylation of five known amino acids following treatment with physiological calcium-mobilizing agent ATP and compared with the effects of PMA (also known as TPA) alone or in combination with ATP. In P-UAEC, ATP stimulated eNOS activity and phosphorylation of eNOS S617, S635, and S1179. PMA promoted eNOS phosphorylation but without activation. PMA and ATP cotreatment attenuated ATP-stimulated activity despite no increase in phospho (p)-T497 and potentiation of p-S1179. In COS-7 cells, PMA inhibition of ATP-stimulated eNOS activity was associated with p-T497 phosphorylation. Although T497D eNOS activity was reduced to 19% of wild-type eNOS with ATP and 44% with A23187, we nonetheless observed more p-S1179 with ATP than with A23187 (3.4-fold and 1.8-fold of control, respectively). Furthermore, the S1179A eNOS mutation partly attenuated ATP- but not A23187-stimulated activity, but when combined with T497D, no further reduction of eNOS activity was observed. In conclusion, although phosphorylation of eNOS is associated with activation in P-UAEC, no single or combination of phosphorylation events predict activity changes. In COS-7 cells, phosphorylation of T497 can attenuate activity but also influences S1179 phosphorylation. We conclude that in both cell types, observed changes in phosphorylation of key residues may influence eNOS activation but are not sufficient alone to describe eNOS activation. 相似文献
20.
Estrogen induced changes in Akt-dependent activation of endothelial nitric oxide synthase and vasodilation 总被引:4,自引:0,他引:4
OBJECTIVES: Acute administration of estrogen results in vasodilation and increased nitric oxide (NO) production. We examined the hypothesis that this is due to activation of Akt/PKB which subsequently increases eNOS activity. METHODS AND RESULTS: Treatment of bovine microvascular and human umbilical endothelial cells (HUVEC) with 17-beta-estradiol (E2) (10(-9) to 10(-5)M) increased phosphorylation of Akt within 1 min and this was followed by phosphorylation of eNOS. These effects were blocked by wortmannin, a PI(3)K inhibitor and the upstream activator of Akt. The estrogen receptor antagonist, ICI 182,780, inhibited eNOS phosphorylation. E2 increased calcium dependent NOS activity and nitrite production and this was inhibited by wortmannin and ICI 182,780. E2 increased the vasodilatory response of aortic rings to acetylcholine and wortmannin blocked the effect. E2 (10(-9)M) dilated cerebral microvascular vessels under conditions of no flow, constant flow and increasing flow and this was blocked by wortmannin. Tamoxifen, a partial estrogen receptor antagonist, also dilated the microvessels. CONCLUSIONS:: E2 increases NO production through an Akt/PKB dependent pathway. This is associated with increased sensitivity to endothelial dependent dilation. In cerebral microvessels, E2 and tamoxifen produce significant dilation at low concentrations with and without acetylcholine induced stimulation of endothelial vasodilation. 相似文献