首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fan L  McElroy K  Thomas T 《PloS one》2012,7(6):e39948
Direct sequencing of environmental DNA (metagenomics) has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data. Simulations showed that reconstructed 16S rRNA genes provided a true picture of the community diversity, had minimal rates of chimera formation and gave taxonomic resolution down to genus level. The strategy was furthermore compared to PCR-based methods to determine the microbial diversity in two marine sponges. This showed that about 30% of the abundant phylotypes reconstructed from metagenomic data failed to be amplified by PCR. Our approach is readily applicable to existing metagenomic datasets and is expected to lead to the discovery of new microbial phylotypes.  相似文献   

2.

Background

The 16S rRNA gene-based amplicon sequencing analysis is widely used to determine the taxonomic composition of microbial communities. Once the taxonomic composition of each community is obtained, evolutionary relationships among taxa are inferred by a phylogenetic tree. Thus, the combined representation of taxonomic composition and phylogenetic relationships among taxa is a powerful method for understanding microbial community structure; however, applying phylogenetic tree-based representation with information on the abundance of thousands or more taxa in each community is a difficult task. For this purpose, we previously developed the tool VITCOMIC (VIsualization tool for Taxonomic COmpositions of MIcrobial Community), which is based on the genome-sequenced microbes’ phylogenetic information. Here, we introduce VITCOMIC2, which incorporates substantive improvements over VITCOMIC that were necessary to address several issues associated with 16S rRNA gene-based analysis of microbial communities.

Results

We developed VITCOMIC2 to provide (i) sequence identity searches against broad reference taxa including uncultured taxa; (ii) normalization of 16S rRNA gene copy number differences among taxa; (iii) rapid sequence identity searches by applying the graphics processing unit-based sequence identity search tool CLAST; (iv) accurate taxonomic composition inference and nearly full-length 16S rRNA gene sequence reconstructions for metagenomic shotgun sequencing; and (v) an interactive user interface for simultaneous representation of the taxonomic composition of microbial communities and phylogenetic relationships among taxa. We validated the accuracy of processes (ii) and (iv) by using metagenomic shotgun sequencing data from a mock microbial community.

Conclusions

The improvements incorporated into VITCOMIC2 enable users to acquire an intuitive understanding of microbial community composition based on the 16S rRNA gene sequence data obtained from both metagenomic shotgun and amplicon sequencing.
  相似文献   

3.
Amplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions and to discover novel lineages. However, traditional short amplicons often do not contain enough information to confidently resolve their phylogeny. Here we present a cost-effective protocol that amplifies a large part of the rRNA operon and sequences the amplicons with PacBio technology. We tested our method on a mock community and developed a read-curation pipeline that reduces the overall read error rate to 0.18%. Applying our method on four environmental samples, we captured near full-length rRNA operon amplicons from a large diversity of prokaryotes. The method operated at moderately high-throughput (22286–37,850 raw ccs reads) and generated a large amount of putative novel archaeal 23S rRNA gene sequences compared to the archaeal SILVA database. These long amplicons allowed for higher resolution during taxonomic classification by means of long (∼1000 bp) 16S rRNA gene fragments and for substantially more confident phylogenies by means of combined near full-length 16S and 23S rRNA gene sequences, compared to shorter traditional amplicons (250 bp of the 16S rRNA gene). We recommend our method to those who wish to cost-effectively and confidently estimate the phylogenetic diversity of prokaryotes in environmental samples at high throughput.  相似文献   

4.
Obtaining full-length 16S rRNA gene sequences is important for generating accurate taxonomy assignments of bacteria, which normally is realized via clone library construction. However, the application of clone library has been hindered due to its limitations in sample throughput and in capturing minor populations (<1?% of total microorganisms). To overcome these limitations, a new strategy, two-step denaturing gradient gel electrophoresis (2S-DGGE), is developed to obtain full-length 16S rRNA gene sequences. 2S-DGGE can compare microbial communities based on its first-round DGGE profiles and generate partial 16S rRNA gene sequences (8-534?bp, Escherichia coli numbering). Then, strain-specific primers can be designed based on sequence information of bacteria of interest to PCR amplify their remaining 16S rRNA gene sequences (515-1541?bps, E. coli numbering). The second-round DGGE can confirm DNA sequence purity of these PCR products. Finally, the full-length 16S rRNA gene sequences can be obtained through combining the two partial DNA sequences. By employing 2S-DGGE, taxonomies of a group of dehalogenating bacteria have been assigned based on their full-length 16S rRNA gene sequences, several of which existed in dehalogenating microcosms as minor populations. In all, 2S-DGGE can be utilized as a medium throughput method for taxonomic identification of interested/minor populations from single or multiple microbial consortia.  相似文献   

5.
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.  相似文献   

6.
Massively parallel pyrosequencing of hypervariable regions from small subunit ribosomal RNA (SSU rRNA) genes can sample a microbial community two or three orders of magnitude more deeply per dollar and per hour than capillary sequencing of full-length SSU rRNA. As with full-length rRNA surveys, each sequence read is a tag surrogate for a single microbe. However, rather than assigning taxonomy by creating gene trees de novo that include all experimental sequences and certain reference taxa, we compare the hypervariable region tags to an extensive database of rRNA sequences and assign taxonomy based on the best match in a Global Alignment for Sequence Taxonomy (GAST) process. The resulting taxonomic census provides information on both composition and diversity of the microbial community. To determine the effectiveness of using only hypervariable region tags for assessing microbial community membership, we compared the taxonomy assigned to the V3 and V6 hypervariable regions with the taxonomy assigned to full-length SSU rRNA sequences isolated from both the human gut and a deep-sea hydrothermal vent. The hypervariable region tags and full-length rRNA sequences provided equivalent taxonomy and measures of relative abundance of microbial communities, even for tags up to 15% divergent from their nearest reference match. The greater sampling depth per dollar afforded by massively parallel pyrosequencing reveals many more members of the “rare biosphere” than does capillary sequencing of the full-length gene. In addition, tag sequencing eliminates cloning bias and the sequences are short enough to be completely sequenced in a single read, maximizing the number of organisms sampled in a run while minimizing chimera formation. This technique allows the cost-effective exploration of changes in microbial community structure, including the rare biosphere, over space and time and can be applied immediately to initiatives, such as the Human Microbiome Project.  相似文献   

7.
Because of technological limitations, the primer and amplification biases in targeted sequencing of 16S rRNA genes have veiled the true microbial diversity underlying environmental samples. However, the protocol of metagenomic shotgun sequencing provides 16S rRNA gene fragment data with natural immunity against the biases raised during priming and thus the potential of uncovering the true structure of microbial community by giving more accurate predictions of operational taxonomic units (OTUs). Nonetheless, the lack of statistically rigorous comparison between 16S rRNA gene fragments and other data types makes it difficult to interpret previously reported results using 16S rRNA gene fragments. Therefore, in the present work, we established a standard analysis pipeline that would help confirm if the differences in the data are true or are just due to potential technical bias. This pipeline is built by using simulated data to find optimal mapping and OTU prediction methods. The comparison between simulated datasets revealed a relationship between 16S rRNA gene fragments and full-length 16S rRNA sequences that a 16S rRNA gene fragment having a length >150 bp provides the same accuracy as a full-length 16S rRNA sequence using our proposed pipeline, which could serve as a good starting point for experimental design and making the comparison between 16S rRNA gene fragment-based and targeted 16S rRNA sequencing-based surveys possible.  相似文献   

8.
Taxonomic marker gene studies, such as the 16S rRNA gene, have been used to successfully explore microbial diversity in a variety of marine, terrestrial, and host environments. For some of these environments long term sampling programs are beginning to build a historical record of microbial community structure. Although these 16S rRNA gene datasets do not intrinsically provide information on microbial metabolism or ecosystem function, this information can be developed by identifying metabolisms associated with related, phenotyped strains. Here we introduce the concept of metabolic inference; the systematic prediction of metabolism from phylogeny, and describe a complete pipeline for predicting the metabolic pathways likely to be found in a collection of 16S rRNA gene phylotypes. This framework includes a mechanism for assigning confidence to each metabolic inference that is based on a novel method for evaluating genomic plasticity. We applied this framework to 16S rRNA gene libraries from the West Antarctic Peninsula marine environment, including surface and deep summer samples and surface winter samples. Using statistical methods commonly applied to community ecology data we found that metabolic structure differed between summer surface and winter and deep samples, comparable to an analysis of community structure by 16S rRNA gene phylotypes. While taxonomic variance between samples was primarily driven by low abundance taxa, metabolic variance was attributable to both high and low abundance pathways. This suggests that clades with a high degree of functional redundancy can occupy distinct adjacent niches. Overall our findings demonstrate that inferred metabolism can be used in place of taxonomy to describe the structure of microbial communities. Coupling metabolic inference with targeted metagenomics and an improved collection of completed genomes could be a powerful way to analyze microbial communities in a high-throughput manner that provides direct access to metabolic and ecosystem function.  相似文献   

9.
Increasingly large datasets of 16S rRNA gene sequences reveal new information about the extent of microbial diversity and the surprising extent of the rare biosphere. Currently, many of the largest datasets are represented by short and variable ribosomal sequence tags (RSTs) that are limited in their ability to accurately assign sequences to broad-scale phylogenetic trees. In this study, we selected 30 rare RSTs from existing sequence datasets and designed primers to amplify c. 1400 bases of the 16S rRNA gene to determine whether these sequences were represented by existing databases or if they might reveal new lineages within the Bacteria. Approximately one-third of the RST primers successfully amplified longer portions of these low-abundance 16S rRNA genes in a specific manner. Subsequent phylogenetic analysis demonstrated that most of these sequences were (1) distantly related to existing cultivated microorganisms and (2) closely related to uncultivated clone sequences that were recently deposited in GenBank. The presence of so many recently collected 16S rRNA gene reference sequences in existing databases suggests that progress is being made quickly towards a microbial census, one which has begun scratching the surface of the 'rare biosphere'.  相似文献   

10.
The potential for comparing microbial community population structures has been greatly enhanced by developments in next generation sequencing methods that can generate hundreds of thousands to millions of reads in a single run. Conversely, many microbial community comparisons have been published with no more than 1,000 sequences per sample. These studies have presented data on levels of shared operational taxonomic units (OTUs) between communities. Due to lack of coverage, that approach might compromise the conclusions about microbial diversity and the degree of difference between environments. In this study, we present data from recent studies that highlight this problem. Also, we analyzed datasets of 16 rRNA sequences with small and high sequence coverage from different environments to demonstrate that the level of sequencing effort used for analyzing microbial communities biases the results. We randomly sampled pyrosequencing-generated 16S rRNA gene libraries with increasing sequence effort. Sequences were used to calculate Good's coverage, the percentage of shared OTUs, and phylogenetic distance measures. Our data showed that simple counts of presence/absence of taxonomic unities do not reflect the real similarity in membership and structure of the bacterial communities and that community comparisons based on phylogenetic tests provide a way to test statistically significant differences between two or more environments without need an exhaustive sampling effort.  相似文献   

11.
12.
Serial analysis of ribosomal sequence tags (SARST) is a novel technique for characterizing microbial community composition. The SARST method captures sequence information from concatemers of short 16S rDNA polymerase chain reaction (PCR) amplicons from complex populations of DNA. Here, we describe a similar method, serial analysis of V6 ribosomal sequence tags (SARST-V6), which targets the V6 hypervariable region of bacterial 16S rRNA genes. The SARST-V6 technique exploits internal primer sequences to generate compatible restriction digest overhangs, thereby improving upon the efficiency of SARST. Serial analysis of V6 ribosomal sequence tags of bacterial community composition in hydrothermal marine sediments from Guaymas Basin resembled results of cloning and sequencing of single, full-length PCR products from ribosomal RNA genes of the same microbial community. Both methods identified the same major bacterial groups, but only SARST-V6 recovered thermodesulfobacteria and gamma-proteobacteria sequences, while only full-length PCR product cloning recovered candidate division OP11 se-quences. There were differences in the relative frequencies of some phylotypes. The disparities reflect differences in the amplicon pool obtained during initial amplification that may result from different primer affinities or DNA degradation. These results demonstrate the utility of SARST-V6 in collecting taxonomically informative data for high-throughput analysis of microbial communities.  相似文献   

13.
There is a concern of whether the structure and diversity of a microbial community can be effectively revealed by short-length pyrosequencing reads. In this study, we performed a microbial community analysis on a sample from a high-efficiency denitrifying quinoline-degrading bioreactor and compared the results generated by pyrosequencing with those generated by clone library technology. By both technologies, 16S rRNA gene analysis indicated that the bacteria in the sample were closely related to, for example, Proteobacteria, Actinobacteria, and Bacteroidetes. The sequences belonging to Rhodococcus were the most predominant, and Pseudomonas, Sphingomonas, Acidovorax, and Zoogloea were also abundant. Both methods revealed a similar overall bacterial community structure. However, the 622 pyrosequencing reads of the hypervariable V3 region of the 16S rRNA gene revealed much higher bacterial diversity than the 130 sequences from the full-length 16S rRNA gene clone library. The 92 operational taxonomic unit (OTUs) detected using pyrosequencing belonged to 45 families, whereas the 37 OTUs found in the clone library belonged to 25 families. Most sequences obtained from the clone library had equivalents in the pyrosequencing reads. However, 64 OTUs detected by pyrosequencing were not represented in the clone library. Our results demonstrate that pyrosequencing of the V3 region of the 16S rRNA gene is not only a powerful tool for discovering low-abundance bacterial populations but is also reliable for dissecting the bacterial community structure in a wastewater environment.  相似文献   

14.
Chan ER  Hester J  Kalady M  Xiao H  Li X  Serre D 《Genomics》2011,98(4):253-259
Deep sequencing of the 16S rRNA gene provides a comprehensive view of bacterial communities in a particular environment and has expanded our ability to study the impact of the microflora on human health and disease. Current analysis methods rely on comparisons of the sequences generated with an expanding but limited set of annotated 16S rRNA sequences or phylogenic clustering of sequences based on arbitrary similarity cutoffs. We describe a novel approach to characterize bacterial composition using deep sequencing of 16S rRNA gene. Our method defines operational taxonomic units based on phylogenetic tree reconstruction and dynamic clustering of sequences using solely sequencing data. These OTUs can be used to identify differences in bacteria abundance between environments. This approach can perform better than previous phylogenetic methods and will significantly improve our understanding of the microfloral role on human diseases by providing a comprehensive analysis of the microbial composition from various bacterial communities.  相似文献   

15.
16S rRNA gene analysis is the most convenient and robust method for microbiome studies. Inaccurate taxonomic assignment of bacterial strains could have deleterious effects as all downstream analyses rely heavily on the accurate assessment of microbial taxonomy. The use of mock communities to check the reliability of the results has been suggested. However, often the mock communities used in most of the studies represent only a small fraction of taxa and are used mostly as validation of sequencing run to estimate sequencing artifacts. Moreover, a large number of databases and tools available for classification and taxonomic assignment of the 16S rRNA gene make it challenging to select the best-suited method for a particular dataset. In the present study, we used authentic and validly published 16S rRNA gene type strain sequences (full length, V3-V4 region) and analyzed them using a widely used QIIME pipeline along with different parameters of OTU clustering and QIIME compatible databases. Data Analysis Measures (DAM) revealed a high discrepancy in ratifying the taxonomy at different taxonomic hierarchies. Beta diversity analysis showed clear segregation of different DAMs. Limited differences were observed in reference data set analysis using partial (V3-V4) and full-length 16S rRNA gene sequences, which signify the reliability of partial 16S rRNA gene sequences in microbiome studies. Our analysis also highlights common discrepancies observed at various taxonomic levels using various methods and databases.  相似文献   

16.
16S rRNA基因在微生物生态学中的应用   总被引:10,自引:0,他引:10  
16S rRNA(Small subunit ribosomal RNA)基因是对原核微生物进行系统进化分类研究时最常用的分子标志物(Biomarker),广泛应用于微生物生态学研究中。近些年来随着高通量测序技术及数据分析方法等的不断进步,大量基于16S rRNA基因的研究使得微生物生态学得到了快速发展,然而使用16S rRNA基因作为分子标志物时也存在诸多问题,比如水平基因转移、多拷贝的异质性、基因扩增效率的差异、数据分析方法的选择等,这些问题影响了微生物群落组成和多样性分析时的准确性。对当前使用16S rRNA基因分析微生物群落组成和多样性的进展情况做一总结,重点讨论当前存在的主要问题以及各种分析方法的发展,尤其是与高通量测序技术有关的实验和数据处理问题。  相似文献   

17.
18.
Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier‐fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454‐pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier‐fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier‐fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the ‘seed bank’, contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier‐fed streams.  相似文献   

19.
We evaluated the impact of the base analogue inosine substituted at the 3'-terminus of broad-range 16S rRNA gene primers on the recovery of microbial diversity using terminal restriction fragment length polymorphism and clonal analysis. Oral plaque biofilms from 10 individuals were tested with modified and unmodified primer pairs. Besides a core overlap of shared terminal restriction fragments (T-RFs), each primer system provided unique information on the occurrence of T-RFs, with a higher number generally displayed with inosine primers. All clones sequenced were at least 99% identical to publicly available full-length sequences. Analysis of the corresponding primer-binding sites showed that most sequence types were 100% complementary to the unmodified primers so that the characteristic of inosine to bind with all four nucleotides was not crucial for the observed increase in microbial richness. Instead, differences in community compositions were correlated with the identity of the nearest-neighbor 3' of the primer-targeting region. By influencing the thermal stability of primer hybridization, this position may play a previously unrecognized role in biased amplification of 16S rRNA gene sequences. In conclusion, the combined use of inosine and unmodified primers enables the complementary retrieval of 16S rRNA gene types, thereby expanding the observed diversity of complex microbial communities.  相似文献   

20.
Massively parallel high throughput sequencing technologies allow us to interrogate the microbial composition of biological samples at unprecedented resolution. The typical approach is to perform high-throughout sequencing of 16S rRNA genes, which are then taxonomically classified based on similarity to known sequences in existing databases. Current technologies cause a predicament though, because although they enable deep coverage of samples, they are limited in the length of sequence they can produce. As a result, high-throughout studies of microbial communities often do not sequence the entire 16S rRNA gene. The challenge is to obtain reliable representation of bacterial communities through taxonomic classification of short 16S rRNA gene sequences. In this study we explored properties of different study designs and developed specific recommendations for effective use of short-read sequencing technologies for the purpose of interrogating bacterial communities, with a focus on classification using naïve Bayesian classifiers. To assess precision and coverage of each design, we used a collection of ∼8,500 manually curated 16S rRNA gene sequences from cultured bacteria and a set of over one million bacterial 16S rRNA gene sequences retrieved from environmental samples, respectively. We also tested different configurations of taxonomic classification approaches using short read sequencing data, and provide recommendations for optimal choice of the relevant parameters. We conclude that with a judicious selection of the sequenced region and the corresponding choice of a suitable training set for taxonomic classification, it is possible to explore bacterial communities at great depth using current technologies, with only a minimal loss of taxonomic resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号