首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycerophosphoinositol 4-phosphate (GroPIns-4P) is a biologically active, water-soluble phospholipase A metabolite derived from phosphatidylinositol 4-phosphate, whose cellular concentrations have been reported to increase in Ras-transformed cells. It is therefore important to understand its biological activities. Herein, we have examined whether GroPIns-4P can regulate the organization of the actin cytoskeleton, because this could be a Ras-related function involved in cell motility and metastatic invasion. We find that in serum-starved Swiss 3T3 cells, exogenously added GroPIns-4P rapidly and potently induces the formation of membrane ruffles, and, later, the formation of stress fibers. These actin structures can be regulated by the small GTPases Cdc42, Rac, and Rho. To analyze the mechanism of action of GroPIns-4P, we selectively inactivated each of these GTPases. GroPIns-4P requires active Rac and Rho, but not Cdc42, for ruffle and stress fiber formation, respectively. Moreover, GroPIns-4P induces a rapid translocation of the green fluorescent protein-tagged Rac into ruffles, and increases the fraction of GTP-bound Rac, in intact cells. The activation of Rac by GroPIns-4P was near maximal and long-lasting. Interestingly, this feature seems to be critical in the induction of actin ruffles by GroPIns-4P.  相似文献   

2.
3.
Skeletal muscle and kidney enriched inositol phosphatase (SKIP) is an inositol polyphosphate 5-phosphatase that hydrolyzes phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to downregulate intracellular levels. In this study, we show that SKIP inhibits phosphoinositide 3-kinase signaling in insulin-stimulated CHO cells. Ectopic expression of SKIP did not inhibit insulin-induced PI(3,4,5)P3 generation but did rapidly decrease insulin-induced intracellular PI(3,4,5)P3 levels compared with those in control cells. Further, insulin-induced phosphorylation of some downstream targets such as Akt and p70 S6 kinase was markedly inhibited by the ectopic expression of SKIP, whereas phosphorylation of mitogen-activated protein kinase was not. In contrast, downregulation of intracellular SKIP levels by antisense oligonucleotides dramatically enhanced Akt (protein kinase B) phosphorylation in response to insulin, suggesting that endogenous SKIP downregulates insulin signaling. SKIP also markedly inhibited GLUT4 translocation and membrane ruffle formation. We conclude that SKIP preferentially regulates glucose transport and actin cytoskeletal rearrangement among a variety of PI(3,4,5)P3 downstream events.  相似文献   

4.
Reversible interactions between cytosolic proteins and membrane lipids such as phosphoinositides play important roles in membrane morphogenesis driven by actin polymerization. In this paper, we identify a novel lipid-binding module, which we call the SYLF domain (after the SH3YL1, Ysc84p/Lsb4p, Lsb3p, and plant FYVE proteins that contain it), that is highly conserved from bacteria to mammals. SH3YL1 (SH3 domain containing Ysc84-like 1) strongly bound to phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P(3)) and several D5-phosphorylated phosphoinositides through its SYLF domain and was localized to circular dorsal ruffles induced by platelet-derived growth factor stimulation. Interestingly, SHIP2 (the PI(3,4,5)P(3) 5-phosphatase, src-homology 2-containing inositol-5-phosphatase 2) was identified as a binding partner of SH3YL1, and knockdown of these proteins significantly suppressed dorsal ruffle formation. Phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)), which is mainly synthesized from PI(3,4,5)P(3) by the action of SHIP2, was enriched in dorsal ruffles, and PI(3,4)P(2) synthesis strongly correlated with formation of the circular membrane structure. These results provide new insight into the molecular mechanism of dorsal ruffle formation and its regulation by phosphoinositide metabolism.  相似文献   

5.
The mechanisms that regulate endoplasmic reticulum (ER) exit-site (ERES) assembly and COPII-mediated ER export are currently unknown. We analyzed the role of phosphatidylinositols (PtdIns) in regulating ER export. Utilizing pleckstrin homology domains and a PtdIns phosphatase to specifically sequester or reduce phosphorylated PtdIns levels, we found that PtdIns 4-phosphate (PtsIns4P) is required to promote COPII-mediated ER export. Biochemical and morphological in vitro analysis revealed dynamic and localized PtsIns4P formation at ERES. PtdIns4P was utilized to support Sar1-induced proliferation and constriction of ERES membranes. PtdIns4P also assisted in Sar1-induced COPII nucleation at ERES. Therefore, localized dynamic remodeling of PtdIns marks ERES membranes to regulate COPII-mediated ER export.  相似文献   

6.
Synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a signaling phospholipid, is primarily carried out by phosphatidylinositol 4-phosphate 5-kinase [PI(4)P5K], which has been reported to be regulated by RhoA and Rac1. Unexpectedly, we find that the GTPgammaS-dependent activator of PI(4)P5Kalpha is the small G protein ADP-ribosylation factor (ARF) and that the activation strictly requires phosphatidic acid, the product of phospholipase D (PLD). In vivo, ARF6, but not ARF1 or ARF5, spatially coincides with PI(4)P5Kalpha. This colocalization occurs in ruffling membranes formed upon AIF4 and EGF stimulation and is blocked by dominant-negative ARF6. PLD2 similarly translocates to the ruffles, as does the PH domain of phospholipase Cdelta1, indicating locally elevated PI(4,5)P2. Thus, PI(4)P5Kalpha is a downstream effector of ARF6 and when ARF6 is activated by agonist stimulation, it triggers recruitment of a diverse but interactive set of signaling molecules into sites of active cytoskeletal and membrane rearrangement.  相似文献   

7.
Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott-Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.  相似文献   

8.
In this paper we explored the effect of copper sulphate on the morphology of actin filaments. Actin filaments attain different shapes and structure when exposed to 2mM concentration of copper sulphate. Lateral branches were observed after 4 h of incubation while shapes like Y- and V- were formed after 8h of incubation. Rings and loops of actin filaments were formed when the concentration of copper sulphate was increased from 2 to 5 mM. Additionally, ring formation was also observed when bead tailed actin filaments were incubated with copper sulphate (5 mM). Electrostatic adhesion energy between ends of actin filaments attracted due to counterion was estimated to be 7.34 kT/μm. Divalent cation induced actin ring formation are similar to toroids of DNA but actin filaments have great bending stiffness due to large diameter of the ring formed. From these results we proposed that polyelectrolyte nature of actin filaments leads to the change in their morphology on exposure to high concentration divalent cations.  相似文献   

9.
The glycerophosphoinositols, phosphoinositide metabolites formed by Ras-dependent activation of phospholipase A2 and a lysophospholipase, have been proposed to be markers of Ras-induced cell transformation. These compounds can have important cellular effects; GroPIns4P is an inhibitor of G protein-stimulated adenylate cyclase and is transiently produced in several cell types after growth factor receptor stimulation of phosphatidylinositol 3-kinase and the small G protein Rac, indicating the importance of defining further its cellular actions and metabolism. We show here that, in postnuclear membranes from Swiss 3T3 cells, there is no high-affinity 'receptor' binding of GroPIns4P. Instead, possibly through the interaction with a transporter, GroPIns4P rapidly equilibrates between medium and cell cytosol, and, at higher concentrations, can concentrate in the cell cytosol. GroPIns4P can be dephosphorylated to GroPIns in vitro by an enzyme that is membrane-associated, Ca2+-dependent, GroPIns4P-selective and has a specific pH profile. Under in vitro phosphorylating conditions, there is production of GroPIns(4,5)P2 and other inositol phosphates. As these in vitro enzyme activities do not fully correlate with the in vivo handling of GroPIns4P, the intracellular GroPIns4P levels may be controlled by its direct physical removal from the cells.  相似文献   

10.
The organization of actin microfilaments was studied by immunofluorescence in protoplasts isolated from sunflower hypocotyls and cultured in an agarose matrix. Removal of the cell wall completely disrupted the actin cytoskeleton, which became progressively reorganized into cortical microfilament arrays and actin cables during protoplast culture. Treatment of protoplasts with arginine-glycine-aspartic acid (Arg-Gly-Asp) motif-containing peptides, to inhibit putative cell contacts with the agarose matrix, strongly affected this repair process: microfilament elongation and cable formation were inhibited and the connectivity between the cortical network and the perinuclear basket was lost. Furthermore, embryoid formation induced by agarose embedding was reduced. Similar effects were observed with a short treatment with latrunculin B, known to disrupt actin microfilaments. These results indicate that the actin network is involved in the signalling process that leads to polarity acquisition and embryoid determination in agarose-embedded protoplasts.  相似文献   

11.
S-glutathionylation, the reversible formation of mixed disulphides of cysteinyl residues in target proteins with glutathione, occurs under conditions of oxidative stress; this could be a posttranslational mechanism through which protein function is regulated by the cellular redox status. A novel physiological relevance of actin polymerization regulated by glutathionylation of Cys(374) has been recently suggested. In the present study we showed that glutathionylated actin (GS-actin) has a decreased capacity to polymerize compared to native actin, filament elongation being the polymerization step actually inhibited. Actin polymerizability recovers completely after dethiolation, indicating that S-glutathionylation does not induce any protein denaturation and is therefore a reversible oxidative modification. The increased exposure of hydrophobic regions of protein surface observed upon S-glutathionylation indicates changes in actin conformation. Structural alterations are confirmed by the increased rate of ATP exchange as well as by the decreased susceptibility to proteolysis of the subtilisin cleavage site between Met(47) and Gly(48), in the DNase-I-binding loop of the actin subdomain 2. Structural changes in the surface loop 39-51 induced by S-glutathionylation could influence actin polymerization in view of the involvement of the N-terminal portion of this loop in intermonomer interactions, as predicted by the atomic models of F-actin.  相似文献   

12.
It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain–containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway.  相似文献   

13.
Type I phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) catalyzes the phosphorylation of phosphatidylinositol 4 phosphate [PI(4)P] at carbon 5, producing phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. Phosphatidic acid (PA) activates PI4P5K in vitro and plays a central role in the activation of PIP5K pathways in vivo. This report demonstrates that actin fiber formation in murine fibroblasts involves PA activation of PIP5Ks and defines biochemical interactions between PA and the PIP5Ks. Inhibition of phospholipase D production of PA results in the loss of actin fibers. Overexpression of the beta isoform of the type I murine phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta) maintains actin fiber structure in the face of phospholipase D inhibition. PA activates mPIP5K-Ibeta by direct binding to mPIP5K-Ibeta through both electrostatic and hydrophobic interactions, with the fatty acid acyl chain length and degree of saturation acting as critical determinants of binding and activation. Furthermore, kinetic analysis suggests that phosphorylation of the PI(4)P substrate does not follow classical Michaelis-Menten kinetics. Instead, the kinetic data are consistent with a model in which mPIP5K-Ibeta initially binds to the lipid micelle and subsequently binds the PI(4)P substrate. In addition, the kinetics indicate substrate inhibition, suggesting that mPIP5K-Ibeta contains an inhibitory PI(4)P-binding site. These results suggest a model in which mPIP5K-Ibeta is surrounded by PI(4)P, but is unable to catalyze its conversion to PI(4,5)P2 unless PA is bound.  相似文献   

14.
Insulin and insulin growth factor have central roles in growth, metabolism and ageing of animals, including Drosophila melanogaster. In Drosophila, insulin-like peptides (Dilps) are produced by specialized neurons in the brain. Here we show that Drosophila short neuropeptide F (sNPF), an orthologue of mammalian neuropeptide Y (NPY), and sNPF receptor sNPFR1 regulate expression of Dilps. Body size was increased by overexpression of sNPF or sNPFR1. The fat body of sNPF mutant Drosophila had downregulated Akt, nuclear localized FOXO, upregulated translational inhibitor 4E-BP and reduced cell size. Circulating levels of glucose were elevated and lifespan was also extended in sNPF mutants. We show that these effects are mediated through activation of extracellular signal-related kinases (ERK) in insulin-producing cells of larvae and adults. Insulin expression was also increased in an ERK-dependent manner in cultured Drosophila central nervous system (CNS) cells and in rat pancreatic cells treated with sNPF or NPY peptide, respectively. Drosophila sNPF and the evolutionarily conserved mammalian NPY seem to regulate ERK-mediated insulin expression and thus to systemically modulate growth, metabolism and lifespan.  相似文献   

15.
Action polymerization is essential for a variety of cellular processes including movement, cell division and shape change. The induction of actin polymerization requires the generation of free actin filament barbed ends, which results from the severing or uncapping of pre-existing actin filaments [1] [2], or de novo nucleation, initiated by the Arp2/3 complex [3] [4] [5] [6] [7]. Although little is known about the signaling pathways that regulate actin assembly, small GTPases of the Rho family appear to be necessary [8] [9] [10] [11]. In thrombin-stimulated platelets, the Rho family GTPase Rac1 induces actin polymerization by stimulating the uncapping of actin filament barbed ends [2]. The mechanism by which Rac regulates uncapping is unclear, however. We previously demonstrated that Rac interacts with a type I phosphatidylinositol-4-phosphate 5-kinase (PIP 5-kinase) in a GTP-independent manner [12] [13]. Because PIP 5-kinases synthesize phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), a lipid that dissociates capping proteins from the barbed ends of actin filaments [14] [15] [16], they are good candidates for mediating the effects of Rac on actin assembly. Here, we have identified the Rac-associated PIP 5-kinase as the PIP 5-kinase isoforms alpha and beta. When added to permeabilized platelets, PIP 5-kinase alpha induced actin filament uncapping and assembly. In contrast, a kinase-inactive PIP 5-kinase alpha mutant failed to induce actin assembly and blocked assembly stimulated by thrombin or Rac. Furthermore, thrombin- or Rac-induced actin polymerization was inhibited by a point mutation in the carboxyl terminus of Rac that disrupts PIP 5-kinase binding. These results demonstrate that PIP 5-kinase alpha is a critical mediator of thrombin- and Rac-dependent actin assembly.  相似文献   

16.
Cellular signalling by sphingosine kinase and sphingosine 1-phosphate   总被引:2,自引:0,他引:2  
Leclercq TM  Pitson SM 《IUBMB life》2006,58(8):467-472
Sphingosine kinases, through the formation of the bioactive phospholipid sphingosine 1-phosphate, have been implicated in a diverse range of cellular processes, including cell proliferation, apoptosis, calcium homeostasis, angiogenesis and vascular maturation. The last few years have seen a number of significant advances in understanding of the mechanisms of action, activation, cellular localisation and biological roles of these enzymes. Here we review the current understanding of the regulation of and cellular signalling by sphingosine kinase and sphingosine 1-phosphate and discuss recent findings implicating sphingosine kinase as a potential therapeutic target for the control of cancer, inflammation and a number of other diseases. We suggest that, since the activation and subcellular localization of these enzymes appear to play critical roles in their biological functions, targeting these processes may provide more specific therapeutic options than direct catalytic inhibitors.  相似文献   

17.
18.
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.  相似文献   

19.
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays an important role during actin polymerization and is produced by the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KI), which are activated by phosphatidic acid (PA). As diacylglycerol kinases (DGKs) generate PA by phosphorylating diacylglycerol (DAG), we investigated whether DGKs were involved in controlling PIP2 levels by regulating PIP5KI activity. Here we show that expression of DGKzeta significantly enhances PIP5KIalpha activity in thrombin-stimulated HEK293 cells, and DGK activity is required for this stimulation. We also observed that DGKzeta co-immunoprecipitated and co-localized with PIP5KIalpha, suggesting that they reside in a regulated signaling complex. To explore the role of DGKzeta in actin polymerization, we examined the subcellular distribution of DGKzeta, PIP5KIalpha and actin, and found that these proteins co-localized with actin in lamellipodial protrusions. Supporting that PIP5KIalpha regulation occurs at the sites of actin polymerization, we found that PIP2 also accumulated in the actin-rich regions of lamellipodia. Significantly, in wounding assays, DGKzeta, PIP5KIalpha and PIP2 accumulated at the leading edge of migrating A172 cells, where massive actin polymerization is known to occur. Combined, these data support a novel function for DGKzeta: by generating PA, it stimulates PIP5KIalpha activity to increase local PIP2, which regulates actin polymerization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号