首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, a gene cluster involving a phosphorylase specific for lacto-N-biose I (LNB; Galbeta1-3GlcNAc) and galacto-N-biose (GNB; Galbeta1-3GalNAc) has been found in Bifidobacterium longum. We showed that the solute-binding protein of a putative ATP-binding cassette-type transporter encoded in the cluster crystallizes only in the presence of LNB or GNB, and therefore we named it GNB/LNB-binding protein (GL-BP). Isothermal titration calorimetry measurements revealed that GL-BP specifically binds LNB and GNB with K(d) values of 0.087 and 0.010 microm, respectively, and the binding process is enthalpy-driven. The crystal structures of GL-BP complexed with LNB, GNB, and lacto-N-tetraose (Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc) were determined. The interactions between GL-BP and the disaccharide ligands mainly occurred through water-mediated hydrogen bonds. In comparison with the LNB complex, one additional hydrogen bond was found in the GNB complex. These structural characteristics of ligand binding are in agreement with the thermodynamic properties. The overall structure of GL-BP was similar to that of maltose-binding protein; however, the mode of ligand binding and the thermodynamic properties of these proteins were significantly different.  相似文献   

2.
Lacto-N-biose phosphorylase (LNBP) from bifidobacteria is involved in the metabolism of lacto-N-biose I (Galβ1→3GlcNAc, LNB) and galacto-N-biose (Galβ1→3GalNAc, GNB). A homologous gene of LNBP (CPF0553 protein) was identified in the genome of Clostridium perfringens ATCC13124, which is a gram-positive anaerobic intestinal bacterium. In the present study, we cloned the gene and compared the substrate specificity of the CPF0553 protein with LNBP from Bifidobacterium longum JCM1217 (LNBPBl). In the presence of α-galactose 1-phosphate (Gal 1-P) as a donor, the CPF0553 protein acted only on GlcNAc and GalNAc, and GalNAc was a more effective acceptor than GlcNAc. The reaction product from GlcNAc/GalNAc and Gal 1-P was identified as LNB or GNB. The CPF0553 protein also phosphorolyzed GNB much faster than LNB, which suggests that the protein should be named galacto-N-biose phosphorylase (GNBP). GNBP showed a k cat/K m value for GNB that was approximately 50 times higher than that for LNB, whereas LNBPBl showed similar k cat/K m values for both GNB and LNB. Because C. perfringens possesses a gene coding endo-α-N-acetylgalactosaminidase, GNBP may play a role in the intestinal residence by metabolizing GNB that is available as a mucin core sugar.  相似文献   

3.
2-Acetamido-2-deoxy-D-galactose (GalNAc) is a common monosaccharide found in biologically functional sugar chains, but its availability is often limited due to the lack of abundant natural sources. In order to produce GalNAc from abundantly available sugars, 2-acetamido-2-deoxy-D-glucose (GlcNAc) was converted to GalNAc by a one-pot reaction using three enzymes involved in the galacto-N-biose/lacto-N-biose I pathway of bifidobacteria. Starting the reaction with 600 mM GlcNAc, 170 mM GalNAc was produced at equilibrium in the presence of catalytic amounts of ATP and UDP-Glc under optimized conditions. GalNAc was separated from GlcNAc using water-eluting cation-exchange chromatography with a commonly available cation-exchange resin.  相似文献   

4.
A one-pot enzymatic reaction to produce lacto-N-biose I (LNB), which is supposed to represent the bifidus factor in human milk oligosaccharides, was demonstrated. Approximately 500 mM of LNB was generated in 10-liter of reaction mixture initially containing 660 mM of sucrose and 600 mM of GlcNAc by the concurrent actions of four enzymes, sucrose phosphorylase, UDP-glucose-hexose-1-phospate uridylyltransferase, UDP-glucose 4-epimerase, and lacto-N-biose phosphorylase, in the presence of UDP-Glc and phosphate, indicating a reaction yield of 83%. LNB was isolated from the mixture by crystallization after yeast treatment. Finally, 1.4 kg of LNB of 99.6% purity was recovered after recrystallization.  相似文献   

5.
We have determined the functions of the enzymes encoded by the lnpB, lnpC, and lnpD genes, located downstream of the lacto-N-biose phosphorylase gene (lnpA), in Bifidobacterium longum JCM1217. The lnpB gene encodes a novel kinase, N-acetylhexosamine 1-kinase, which produces N-acetylhexosamine 1-phosphate; the lnpC gene encodes UDP-glucose hexose 1-phosphate uridylyltransferase, which is also active on N-acetylhexosamine 1-phosphate; and the lnpD gene encodes a UDP-glucose 4-epimerase, which is active on both UDP-galactose and UDP-N-acetylgalactosamine. These results suggest that the gene operon lnpABCD encodes a previously undescribed lacto-N-biose I/galacto-N-biose metabolic pathway that is involved in the intestinal colonization of bifidobacteria and that utilizes lacto-N-biose I from human milk oligosaccharides or galacto-N-biose from mucin sugars.  相似文献   

6.
The localization and characterization of oligosaccharide sequences in the cat testis was investigated using 12 lectins in combination with the beta-elimination reaction, N-Glycosidase F and sialidase digestion. Leydig cells expressed O-linked glycans with terminal alphaGalNAc (HPA reactivity) and N-glycans with terminal/internal alphaMan (Con A affinity). The basement membrane showed terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,3GalNAc, alpha/betaGalNAc, and GlcNAc (SNA, PNA, HPA, SBA, GSA II reactivity) in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc (RCA120 staining) and alphaMan in N-linked oligosaccharides; in addition, terminal Neu5acalpha2,3Galbeta1,4GlcNac, Forssman pentasaccharide, alphaGal, alphaL-Fuc and internal GlcNAc (MAL II, DBA, GSA I-B4, UEA I, KOH-sialidase-WGA affinity) formed both O- and N-linked oligosaccharides. The Sertoli cells cytoplasm contained terminal Neu5Ac-Galbeta1,4GlcNAc, Neu5Ac-betaGalNAc as well as internal GlcNAc in O-linked glycans, alphaMan in N-linked glycoproteins and terminal Neu5Acalpha2,6Gal/ GalNAc in both O- and N-linked oligosaccharides. Spermatogonia exhibited cytoplasmic N-linked glycoproteins with alphaMan residues. The spermatocytes cytoplasm expressed terminal Neu5Acalpha2,3Galbeta1,4 GlcNAc and Galbeta1,3GalNAc in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-linked glycoconjugates. The Golgi region showed terminal Neu5Acalpha2,3Galbeta1,4GlcNac, Galbeta1,4GlcNAc, Forssman pentasaccharide, and alphaGalNAc in O-linked oligosaccharides, alphaMan and terminal betaGal in N-linked oligosaccharides. The acrosomes of Golgi-phase spermatids expressed terminal Galbeta1,3GalNAc, Galbeta1,4GlcNAc, Forssmann pentasaccharide, alpha/betaGalNAc, alphaGal and internal GlcNAc in O-linked oligosaccharides, terminal alpha/betaGalNAc, alphaGal and terminal/internal alphaMan in N-linked glycoproteins. The acrosomes of cap-phase spermatids lacked internal Forssman pentasaccharide and alphaGal, while having increased alpha/betaGalNAc. The acrosomes of elongated spermatids did not show terminal Galbeta1,3GalNAc, displayed terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-glycans and Neu5Ac-Galbeta1,3GalNAc in O-linked oligosaccharides.  相似文献   

7.
An agglutinin that has high affinity for GalNAcbeta1-->, was isolated from seeds of Wistaria sinensis by adsorption to immobilized mild acid-treated hog gastric mucin on Sepharose 4B matrix and elution with aqueous 0.2 M lactose. The binding property of this lectin was characterized by quantitative precipitin assay (QPA) and by inhibition of biotinylated lectin-glycan interaction. Of the 37 glycoforms tested by QPA, this agglutinin reacted best with a GalNAcbeta1-->4 containing glycoprotein (GP) [Tamm-Horsfall Sd(a+) GP]; a Galbeta1-->4GlcNAc containing GP (human blood group precursor glycoprotein from ovarian cyst fluid and asialo human alpha1-acid GP) and a GalNAcalpha1-->3GalNAc containing GP (asialo bird nest GP), but poorly or not at all with most sialic acid containing glycoproteins. Among the oligosaccharides tested, GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Fp) was the most active ligand. It was as active as GalNAc and two to 11 times more active than Tn cluster mixtures, Galbeta1--> 3/4GlcNAc (I/II), GalNAcalpha1-->3(L-Fucalpha1-->2)Gal (Ah), Galbeta1-->4Glc (L), Galbeta1-->3GalNAc (T) and Galalpha1--> 3Galalpha-->methyl (B). Of the monosaccharides and their glycosides tested, p-nitrophenyl betaGalNAc was the best inhibitor; it was approximately 1.7 and 2.5 times more potent than its corresponding alpha anomer and GalNAc (or Fp), respectively. GalNAc was 53.3 times more active than Gal. From the present observations, it can be concluded that the Wistaria agglutinin (WSA) binds to the C-3, C-4 and C-6 positions of GalNAc and Gal residues; the N-acetyl group at C-2 enhances its binding dramatically. The combining site of WSA for GalNAc related ligands is most likely of a shallow type, able to recognize both alpha and beta anomers of GalNAc. Gal ligands must be Galbeta1-->3/4GlcNAc related, in which subterminal beta1-->3/4 GlcNAc contributes significantly to binding; hydrophobicity is important for binding of the beta anomer of Gal. The decreasing order of the affinity of WSA for mammalian structural carbohydrate units is Fp >/= multi-II > monomeric II >/= Tn, I and Ah >/= E and L > T > Gal.  相似文献   

8.
Aplysia gonad lectin (AGL), which has been shown to stimulate mitogenesis in human peripheral lymphocytes, to suppress tumor cells, and to induce neurite outgrowth and improve cell viability in cultured Aplysia neurons, exhibits a peculiar galacturonic acid/galactose specificity. The carbohydrate binding site of this lectin was characterized by enzyme-linked lectino-sorbent assay and by inhibition of AGL-glycan interactions. Examination of the lectin binding with 34 glycans revealed that it reacted strongly with the following glycoforms: most human blood group precursor (equivalent) glycoproteins (gps), two Galalpha1-->4Gal-containing gps, and two d-galacturonic acid (GalUA)-containing polysaccharides (pectins from apple and citrus fruits), but poorly with most human blood group A and H active and sialylated gps. Among the GalUA and mammalian saccharides tested for inhibition of AGL-glycan binding, GalUA mono- to trisaccharides were the most potent ones. They were 8.5 x 10(4) times more active than Gal and about 1.5 x 10(3) more active than the human blood group P(k) active disaccharide (E, Galalpha1-->4Gal). This disaccharide was 6, 28, and 120 times more efficient than Galbeta1-->3GlcNAc(I), Galbeta1-->3GalNAc(T), and Galbeta1--> 4GlcNAc (II), respectively, and 35 and 80 times more active than melibiose (Galalpha1-->6Glc) and human blood group B active disaccharide (Galalpha1-->3Gal), respectively, showing that the decreasing order of the lectin affinity toward alpha-anomers of Gal is alpha1-->4 > alpha1-->6 > alpha1-->3. From the data provided, the carbohydrate specificity of AGL can be defined as GalUAalpha1-->4 trisaccharides to mono GalUA > branched or cluster forms of E, I, and II monomeric E, I, and II, whereas GalNAc is inactive.  相似文献   

9.
The all-transglycolytic synthesis of lacto-N-biose I (Galbeta1-3GlcNAc) and 3'-sialyl-lacto-N-biose I (NeuAcalpha2-3Galbeta1-3GlcNAc) was performed. The disaccharide lacto-N-biose I was obtained by use of p-nitrophenyl beta-D-galactopyranoside as the donor, 2-acetamido-2-deoxy-D-glucopyranose as the acceptor and Xanthomonas manihotis beta-D-galactosidase as the catalyst. The reaction was shown to be regiospecific, with a high molar yield (about 55%) with respect to the donor. Lacto-N-biose I obtained by this method was used as the acceptor for a subsequent enzymatic reaction catalyzed by Trypanosoma cruzi trans-sialidase in which 2'-(4-methylumbellyferyl)-alpha-D-N-acetylneuraminic was used as the donor of the N-acetylneuraminil moiety. The reaction generated the product, 3'-sialyl-lacto-N-biose I, regiospecifically and with a molar yield of about 35%.  相似文献   

10.
We previously demonstrated a unique alpha-N-acetylgalactosaminyltransferase that transferred N-acetylgalactosamine (GalNAc) to the tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser (GlcA represents glucuronic acid), derived from the common glycosaminoglycan-protein linkage region, through an alpha1,4-linkage. In this study, we purified the enzyme from the serum-free culture medium of a human sarcoma cell line. Peptide sequence analysis of the purified enzyme revealed 100% identity to the multiple exostoses-like gene EXTL2/EXTR2, a member of the hereditary multiple exostoses (EXT) gene family of tumor suppressors. The expression of a soluble recombinant form of the protein produced an active enzyme, which transferred alpha-GalNAc from UDP-[3H]GalNAc to various acceptor substrates including GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser. Interestingly, the enzyme also catalyzed the transfer of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc to GlcAbeta1-3Galbeta1-O-naphthalenemethanol, which was the acceptor substrate for the previously described GlcNAc transferase I involved in the biosynthetic initiation of heparan sulfate. The GlcNAc transferase reaction product was sensitive to the action of heparitinase I, establishing the identity of the enzyme to be alpha1, 4-GlcNAc transferase. These results altogether indicate that EXTL2/EXTR2 encodes the alpha1,4-N-acetylhexosaminyltransferase that transfers GalNAc/GlcNAc to the tetrasaccharide representing the common glycosaminoglycan-protein linkage region and that is most likely the critical enzyme that determines and initiates the heparin/heparan sulfate synthesis, separating it from the chondroitin sulfate/dermatan sulfate synthesis.  相似文献   

11.
Adenosine phosphorylase, a purine nucleoside phosphorylase endowed with high specificity for adenine nucleosides, was purified 117-fold from vegetative forms of Bacillus cereus. The purification procedure included ammonium sulphate fractionation, pH 4 treatment, ion exchange chromatography on DEAE-Sephacel, gel filtration on Sephacryl S-300 HR and affinity chromatography on N(6)-adenosyl agarose. The enzyme shows a good stability to both temperature and pH. It appears to be a homohexamer of 164+/-5 kDa. Kinetic characterization confirmed the specificity of this phosphorylase for 6-aminopurine nucleosides. Adenosine was the preferred substrate for nucleoside phosphorolysis (k(cat)/K(m) 2.1x10(6) s(-1) M(-1)), followed by 2'-deoxyadenosine (k(cat)/K(m) 4.2x10(5) s(-1) M(-1)). Apparently, the low specificity of adenosine phosphorylase towards 6-oxopurine nucleosides is due to a slow catalytic rate rather than to poor substrate binding.  相似文献   

12.
Wu AM  Wu JH  Tsai MS  Herp A 《Life sciences》2000,66(26):2571-2581
The root of Trichosanthes kirilowii, which has been used as Chinese folk medicine for more than two thousand years, contains a Gal specific lectin (TKA). In order to elucidate its binding roles, the carbohydrate specificities of TKA were studied by enzyme linked lectinosorbent assay (ELLSA) and by inhibition of lectin-glycoform binding. Among glycoproteins (gp) tested, TKA reacted strongly with complex carbohydrates with Galbeta1-->4GlcNAc clusters as internal or core structures (human blood group ABH active glycoproteins from human ovarian cyst fluids, hog gastric mucin, and fetuin), porcine salivary glycoprotein and its asialo product, but it was inactive with heparin and mannan (negative control). Of the sugar inhibitors tested for inhibition of binding, Neu5Ac alpha2-->3/6Galbeta1-->4Glc was the best and about 4, 14.6 and 27.7 times more active than Galbeta1-->4GlcNAc(II), Galbeta1-->3GalNAc(T) and Gal, respectively. From these results, it is suggested that this agglutinin is specific for terminal or internal polyvalent Galbeta1-->4GlcNAcbeta1-->, terminal Neu5Ac alpha2-->3/6Galbeta1-->4Glc and cluster forms of Galbeta1-->3GalNAc alpha residues. The unusual affinity of TKA for terminal and internal Galbeta1-->glycotopes may be used to explain the possible attachment roles of this agglutinin in this folk medicine to target cells.  相似文献   

13.
We report a novel enzyme from the culture filtrate of Amycolatopsis orientalis, that endoglycosidically releases an N-acetyllactosamine-repeating unit (Galbeta1,4GlcNAcbeta1,3Galbeta1,4GlcNAc, LN2) from a synthetic chromogenic substrate Galbeta1,4GlcNAcbeta1,3Galbeta1,4GlcNAcbeta-pNP (1). The enzyme activity was purified by 80% saturated ammonium sulfate precipitation followed by gel filtration and affinity chromatography. The enzyme splits 1, Galbeta1,4GlcNAcbeta-pNP (2), GlcNAcbeta1,3Galbeta1,4GlcNAcbeta-pNP (3), and GlcNAcbeta1,4GlcNAcbeta-pNP (4) into the corresponding oligosaccharides and p-nitrophenol. The catalytic efficiencies (k(cat)/K(m)) for compounds 1, 2, and 4 were 0.6, 0.05, and 13, respectively. Compound 4 acts as a fairly good substrate for the enzyme, and LN2-releasing activity was inhibited by 4 and GlcNAcbeta1,4GlcNAcbeta1,4GlcNAcbeta-pNP (7), indicating that this enzyme activity is derived from a kind of chitinase. The enzyme hydrolyzed 1 by a mechanism leading to retention of the anomeric configuration. This is the first report of a N-acetyllactosamine-repeating unit releasing enzyme.  相似文献   

14.
Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha fruit, is a galactose-binding lectin and a potent mitogen of T and B cells. Knowledge obtained from previous studies on the affinity of ALA was limited to molecular and submolecular levels of Galbeta1-->3GalNAc (T) and its derivatives. In the present study, the carbohydrate specificity of ALA was characterized at the macromolecular level according to the mammalian Gal/GalNAc structural units and corresponding glycoconjugates by an enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results indicate that ALA binds specifically to tumor-associated carbohydrate antigens GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3 GalNAcalpha1-->Ser/Thr (Talpha). It barely cross-reacts with other common glycotopes on glycoproteins, including ABH blood group antigens, Galbeta1-->3/4GlcNAc (I/II) determinants, T/Tn covered by sialic acids, and N-linked plasma glycoproteins. Dense clustering structure of Tn/Talpha-containing glycoproteins tested resulted in 2.4 x 10(5)-6.7 x 10(5)-fold higher affinities to ALA than the respective GalNAc and Gal monomer. According to our results, the overall affinity of ALA for glycans can be ranked respectively: polyvalent Tn/Talpha glycotopes > monomeric Talpha and simple clustered Tn > monomeric Tn > GalNAc > Gal; while other glycotopes: Galalpha1-->3/4Gal (B/E), Galbeta1-->3/4GlcNAc (I/II), GalNAcalpha1-->3Gal/GalNAc (A/F), and GalNAcbeta1-->3/4Gal (P/S) were inactive. The strong specificity of ALA for Tn/Talpha cluster suggests the importance of glycotope polyvalency during carbohydrate-receptor interactions and emphasizes its value as an anti-Tn/T lectin for analysis of glycoconjugate mixtures or transformed carbohydrates.  相似文献   

15.
Breast-fed infants often have intestinal microbiota dominated by bifidobacteria in contrast to formula-fed infants. We found that several bifidobacterial strains produce a lacto-N-biosidase that liberates lacto-N-biose I (Galbeta1,3GlcNAc; type 1 chain) from lacto-N-tetraose (Galbeta1,3GlcNAcbeta1,3Galbeta1,4Glc), which is a major component of human milk oligosaccharides, and subsequently isolated the gene from Bifidobacterium bifidum JCM1254. The gene, designated lnbB, was predicted to encode a protein of 1,112 amino acid residues containing a signal peptide and a membrane anchor at the N and C termini, respectively, and to possess the domain of glycoside hydrolase family 20, carbohydrate binding module 32, and bacterial immunoglobulin-like domain 2, in that order, from the N terminus. The recombinant enzyme showed substrate preference for the unmodified beta-linked lacto-N-biose I structure. Lacto-N-biosidase activity was found in several bifidobacterial strains, but not in the other enteric bacteria, such as clostridia, bacteroides, and lactobacilli, under the tested conditions. These results, together with our recent finding of a novel metabolic pathway specific for lacto-N-biose I in bifidobacterial cells, suggest that some of the bifidobacterial strains are highly adapted for utilizing human milk oligosaccharides with a type 1 chain.  相似文献   

16.
Wu AM  Wu JH  Chen Y  Tsai M  Herp A 《FEBS letters》1999,463(3):225-230
The binding properties of Caragana arborescens agglutinin (CAA, pea tree agglutinin) were studied by enzyme linked lectinosorbent assay (ELLSA) and by inhibition of CAA-glycan interaction. Among glycoproteins (gps) tested, CAA reacted strongly with asialo bird nest gp, asialo rat sublingual gp, human Tamm-Horsfall Sd(a(+)) urinary gp (THGP) and asialo THGP that are rich in GalNAcalpha1-->, GalNAcbeta1--> and/or Galbeta1-->4GlcNAc residues. CAA also bound tightly with multi-valent Galbeta1-->4GlcNAc (mII) containing glycoproteins (human blood group precursor gps, asialo fetuin) and asialo ovine salivary glycoprotein (Tn, GalNAcalpha1-->Ser/Thr), but CAA reacted poorly or not at all with sialylated glycoproteins tested. Of the sugars tested for inhibition of binding, Forssman pentasaccharide (F(p), GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc) was the best. It was about 2.3, 9.5 and 52.6 times more active than Galbeta1-->4GlcNAc, GalNAc and Gal, respectively, and about 1.9 times more active than tri-antennary Galbeta1-->4GlcNAc (Tri-II). These results suggest that this agglutinin is mainly specific for F(p), mII and Tn clusters. This property can be used to detect human abnormal glycotopes related to F(p) and unmasked mII/Tn clusters and to study cell growth and differentiation given the lack of toxicity of this lectin toward mouse fibroblast cells.  相似文献   

17.
The carbohydrate expression in the epithelium lining the oesophagus of the toadfish Halobatrachus didactylus was studied by means of conventional and lectin histochemistry. The stratified epithelium was constituted by basal cells, polymorphous cells in the intermediate layer, pyramidal and flattened cells in the outer layer and contained two types of large secretory cells: goblet cells and sacciform cells. PAS, Alcian blue pH 2.5 and pH 1.0 stained very strongly the goblet cells, weakly the surface of the other epithelial cells but did not stain the sacciform cells. The goblet cells cytoplasm contained oligosaccharides with terminal Galbeta1,3GalNAc, alpha/betaGalNAc, Galbeta1,4GlcNAc, alphaL-Fuc and internal betaGlcNAc residues (PNA, SBA, RCA120, UEA I, LTA and KOH-sialidase-WGA affinity). Galbeta1,4GlcNAc, alphaL-Fuc and internal betaGlcNAc were also found in the glycocalyx. The sacciform cells expressed sialyloligosaccharides terminating with Neu5Acalpha2,3Galbeta1,4GlcNac, Neu5Acbeta2,6Gal/GalNAc, Neu5AcForssman pentasaccharide (MAL II, SNA, KOH-sialidase-DBA staining) as well as asialo-glycoconjugates with terminal/internal alphaMan (Con A affinity) and with terminal Galbeta1,3GalNAc, Forssman pentasaccharide, Galbeta1,4GlcNAc, GalNAc (HPA and SBA reactivity), alphaGal (GSA I-B4 reactivity), D-GlcNAc (GSA II labelling), alphaL-Fuc. The basal cells cytoplasm exhibited terminal/internal alphaMan and terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,4GlcNAc, alpha/betaGalNAc, alphaGal, GlcNAc, alphaL-Fuc. Intermediate cells showed oligosaccharides with terminal/internal alphaMan and/or terminating with Neu5Acalpha2,6Gal/GalNAc, Galbeta1,4GlcNAc in the cytoplasm and with Neu5Acalpha2,3Galbeta1,4GlcNac, alpha/betaGalNAc, alphaGal, GlcNAc, alphaL-Fuc in the glycocalyx. The pyramidal cells expressed terminal/internal alphaMan and terminal Neu5Acalpha2,6Gal/GalNAc, alpha/betaGalbeta1,4NAc, alphaGal, alphaL-Fuc in the entire cytoplasm, terminal Neu5Acalpha2,3Galbeta1,4GlcNac and Forssman pentasaccharide in the apical extension, internal betaGlcNAc and/or terminal alphaL-Fuc in the luminal surface, Neu5Acalpha2,3Galbeta1,4GlcNac, Neu5Acalpha2,6Gal/GalNAc, Galbeta1,4GlcNAc, alphaGal in the basolateral surface. The flattened cells displayed glycans with terminal/internal alphaMan and terminal Neu5Acalpha2,6Gal/GalNAc, alpha/betaGalNAc, alphaGal, D-GlcNAc in the entire cytoplasm, glycans terminating with Galbeta1,3GalNAc and/or internal betaGlcNAc in the sub-nuclear cytoplasm.  相似文献   

18.
A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates.  相似文献   

19.
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.  相似文献   

20.
Hardy LW  Kirsch JF 《Biochemistry》1984,23(6):1275-1282
The Bacillus cereus beta-lactamase I catalyzes the hydrolysis of a wide variety of penicillins and cephalosporins with values of k(cat)/K(m) varying over several orders of magnitude. The values of this parameter for the most reactive of these compounds, benzylpenicillin, I, and furylacryloyl-penicillin, II (k(cat)/K(m) = 2.43 x 10(7) M(-1) s(-1) and 2.35 x 10(7) M(-1) s(-1), respectively, at pH 7.0 in potassium phosphate buffer containing 0.17 M KCl, I(c) = 0.63, 25 degrees C) are decreased markedly by increasing viscosity in sucrose- or glycerol-containing buffers. The relative sensitivities to viscosity of k(cat)/K(m) values for I and for cephaloridine, III, were found to be virtually unchanged at pH 3.8 from those observed at pH 7.0. The differential effects of viscosity on the reactive vs. the sluggish [e.g., cephalothin (IV), k(cat)/K(m) = 1 x 10(4) M(-1) s(-1)] substrates support the contention that the rates of reaction of the former with the enzyme are in part diffusion controlled. Quantitative analysis gives values for the association rate constants, k(1), of 7.6 x 10(7) M(-1) s(-1), 4 x 10(7) M(-1) s(-1), and 1.1 x 10(7) M(-1) s(-1) for I, II, and III, respectively. As both reactive and sluggish substrates associate with the active site of the enzyme with relatively similar rate constants, the variation in k(cat)/K(m) values is primarily due to the variation in the partition ratios k(-1)/k(2), for the ES complex, which are 2.3, 0.77, and 30 for I, II, and III, respectively. The preceding analysis is based on direct application of the Stokes-Einstein diffusion law to enzyme kinetics. The range of applicability of this law to the diffusion of substrate size molecules and the mechanics of diffusion of ionic species through viscous solutions of sucrose vs. polymers are explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号