首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Phosphoinositide 3-kinases (PI3Ks) are dual specificity lipid and protein kinases. While the lipid-dependent PI3K downstream signaling is well characterized, little is known about PI3K protein kinase signaling and structural determinants of lipid substrate specificity across the various PI3K classes. Here we show that sequences C-terminal to the PI3K ATP-binding site determine the lipid substrate specificity of the class IA PI3Kalpha (p85/p110alpha). Transfer of such activation loop sequences from class II PI3Ks, class III PI3Ks, and a related mammalian target of rapamycin (FRAP) into p110alpha turns the lipid substrate specificity of the resulting hybrid protein into that of the donor protein, while leaving the protein kinase activity unaffected. All resulting hybrids lacked the ability to produce phosphatidylinositol 3,4,5-trisphosphate in intact cells. Amino acid substitutions and structure modeling showed that two conserved positively charged (Lys and Arg) residues in the activation loop are crucial for the functionality of class I PI3Ks as phosphatidylinositol 4,5-bisphosphate kinases. By transient transfecion of 293 cells, we show that p110alpha hybrids, although unable to support lipid-dependent PI3K signaling, such as activation of protein kinase B/Akt and p70(S6k), retain the capability to associate with and phosphorylate insulin receptor substrate-1, with the same specificity and higher efficacy than wild type PI3Kalpha. Our data lay the basis for the understanding of the class I PI3K substrate selectivity and for the use of PI3Kalpha hybrids to dissect PI3Kalpha function as lipid and protein kinase.  相似文献   

3.
High ethanol intake is considered to impair insulin sensitivity. In the present study, we investigated the acute and chronic effects of ethanol intake on glucose metabolism and insulin signal transduction. Hyperinsulinemic-euglycemic clamp studies revealed 70% and 51% decreases in the glucose infusion rate, 52% and 31% decreases in the glucose utilization rate, and 6.6- and 8.0-fold increases in hepatic glucose in continuous- and acute-ethanol-loaded rats, respectively. Despite the presence of insulin resistance, alcohol-fed rats showed enhanced tyrosine phosphorylation of insulin receptors, IRS-1 and IRS-2, induced by insulin injection via the portal vein. PI 3-kinase activities associated with IRSs and phosphotyrosine also increased significantly as compared with those of controls. These data suggest ethanol intake to be a factor leading to insulin resistance, regardless of whether it is a single or continuous intake. In addition, the insulin signaling step impaired by ethanol feeding is likely to be downstream from PI 3-kinase.  相似文献   

4.
The Polycomb Group protein EZH2 is upregulated in most prostate cancers, and its overexpression is associated with poor prognosis. Most insights into the functional role of EZH2 in prostate cancer have been gained using cell lines and EZH2 inactivation studies. However, the question remains whether overexpression of EZH2 can initiate prostate tumourigenesis or drive tumour progression. Appropriate transgenic mouse models that are required to answer such questions are lacking. We developed one such transgenic mouse model for conditional overexpression of Ezh2. In this transgene, Ezh2 and Luciferase are transcribed from a single open reading frame. The latter gene enables intravital bioluminescent imaging of tissues expressing this transgene, allowing the detection of tumour outgrowth and potential metastatic progression over time. Prostate-specific Ezh2 overexpression by crossbreeding with Probasin-Cre mice led to neoplastic prostate lesions at low incidence and with a long latency. Compounding a previously described Bmi1-transgene and Pten-deficiency prostate cancer mouse model with the Ezh2 transgene did not enhance tumour progression or drive metastasis formation. In conclusion, we here report the generation of a wildtype Ezh2 overexpression mouse model that allows for intravital surveillance of tissues with activated transgene. This model will be an invaluable tool for further unravelling the role of EZH2 in cancer.  相似文献   

5.
Cardiac hypertrophy and heart failure remain leading causes of death in the United States. Many studies have suggested that, under stress, myocardium releases factors triggering protein synthesis and stimulating myocyte growth. We identified and cloned myotrophin, a 12-kDa protein from hypertrophied human and rat hearts. Myotrophin (whose gene is localized on human chromosome 7q33) stimulates myocyte growth and participates in cellular interaction that initiates cardiac hypertrophy in vitro. In this report, we present data on the pathophysiological significance of myotrophin in vivo, showing the effects of overexpression of cardio-specific myotrophin in transgenic mice in which cardiac hypertrophy occurred by 4 weeks of age and progressed to heart failure by 9-12 months. This hypertrophy was associated with increased expression of proto-oncogenes, hypertrophy marker genes, growth factors, and cytokines, with symptoms that mimicked those of human cardiomyopathy, functionally and morphologically. This model provided a unique opportunity to analyze gene clusters that are differentially up-regulated during initiation of hypertrophy versus transition of hypertrophy to heart failure. Importantly, changes in gene expression observed during initiation of hypertrophy were significantly different from those seen during its transition to heart failure. Our data show that overexpression of myotrophin results in initiation of cardiac hypertrophy that progresses to heart failure, similar to changes in human heart failure. Knowledge of the changes that take place as a result of overexpression of myotrophin at both the cellular and molecular levels will suggest novel strategies for treatment to prevent hypertrophy and its progression to heart failure.  相似文献   

6.
7.
8.
Fat-1 transgenic mice: a new model for omega-3 research   总被引:3,自引:0,他引:3  
An appropriate animal model that can eliminate confounding factors of diet would be very helpful for evaluation of the health effects of nutrients such as n-3 fatty acids. We recently generated a fat-1 transgenic mouse expressing the Caenorhabditis elegans fat-1 gene encoding an n-3 fatty acid desaturase that converts n-6 to n-3 fatty acids (which is absent in mammals). The fat-1 transgenic mice are capable of producing n-3 fatty acids from the n-6 type, leading to abundant n-3 fatty acids with reduced levels of n-6 fatty acids in their organs and tissues, without the need of a dietary n-3 supply. Feeding an identical diet (high in n-6) to the transgenic and wild-type littermates can produce different fatty acid profiles in these animals. Thus, this model allows well-controlled studies to be performed, without the interference of the potential confounding factors of diet. The transgenic mice are now being used widely and are emerging as a new tool for studying the benefits of n-3 fatty acids and the molecular mechanisms of their action.  相似文献   

9.
Yue Y  Zhang M  Zhang J  Duan L  Li Z 《Plant science》2011,181(4):405-411
Drought is a major environmental stress factor that affects growth and development of plants. Abscisic acid (ABA), osmotically active compounds, and synthesis of specific proteins, such as proteins that scavenge oxygen radicals, are crucial for plants to adapt to water deficit. LOS5/ABA3 (LOS5) encodes molybdenum-cofactor sulfurase, which is a key regulator of ABA biosynthesis. We overexpressed LOS5 in tobacco using Agrobacterium-mediated transformation. Detached leaves of LOS5-overexpressing seedlings showed lower transpirational water loss than that of nontransgenic seedlings in the same period under normal conditions. When subjected to water-deficit stress, transgenic plants showed less wilting, maintained higher water content and better cellular membrane integrity, accumulated higher quantities of ABA and proline, and exhibited higher activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, as compared with control plants. Furthermore, LOS5-overexpressing plants treated with 30% polyethylene glycol showed similar performance in cellular membrane protection, ABA and proline accumulation, and activities of catalase and peroxidase to those under drought stress. Thus, overexpression of LOS5 in transgenic tobacco can enhance drought tolerance.  相似文献   

10.
Myocardial infarction (MI) is a severe coronary artery disease resulted from substantial and sustained ischemia. Abnormal upregulation of calcium and integrin binding protein 1 (CIB1) has been found in several cardiovascular diseases. In this study, we established a mouse model of MI by permanent ligation of the left anterior descending coronary artery. CIB1 was upregulated in the heart of MI mice. Notably, CIB1 knockdown by intramuscular injection of lentivirus-mediated short hairpin RNA (shRNA) targeting Cib1 improved cardiac function and attenuated myocardial hypertrophy and infarct area in MI mice. MI-induced upregulation of α-SMA, vimentin, Collagen I, and Collagen III, which resulted in collagen production and myocardial fibrosis, were regressed by CIB1 silencing. In vitro, cardiac fibroblasts (CFs) isolated from mice were subjected to angiotensin II (Ang II) treatment. Inhibition of CIB1 downregulated the expression of α-SMA, vimentin, Collagen I, and Collagen III in Ang II-treated CFs. Moreover, CIB1 knockdown inhibited Ang II-induced phosphorylation of PI3K-p85 and Akt in CFs. The effect of CIB1 knockdown on Ang II-induced cellular injury was comparable to that of LY294002, a specific inhibitor of the PI3K/Akt pathway. We demonstrated that MI-induced cardiac hypertrophy, myocardial fibrosis, and cardiac dysfunction might be attributed to the upregulation of CIB1 in MI mice. Downregulation of CIB1 alleviated myocardial fibrosis and cardiac dysfunction by decreasing the expression of α-SMA, vimentin, Collagen I, and Collagen III via inhibiting the PI3K/Akt pathway. Therefore, CIB1 may be a potential target for MI treatment.  相似文献   

11.
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents, typically presenting with poor prognosis. Recent studies suggested that tumor initiating cells (T-ICs) drive tumor formation and relapse or metastasis and are relatively resistant to cell death induced by conventional chemo- and radiotherapies. Therefore, the poor prognosis of OS appears to be associated with T-ICs. Here, we enriched T-ICs in OS cell lines and evaluated whether the imprinted gene TSSC3 (tumor-suppressing STF cDNA 3) associated with apoptosis could affect T-ICs in OS. Sarcosphere selection and serial clone-forming unit assays were successfully used to enrich T-ICs from OS cell lines. Enrichment of T-ICs from a malignantly transformed hFOB1.19 osteoblast cell line (MThFOB1.19) indicated that OS T-ICs could originate from differentiated cells, and most of these MThFOB1.19 cells showed stem-like features. TSSC3 was expressed at a low level in T-ICs, while overexpression of TSSC3 could efficiently downregulate the expression of stem cell markers Nanog, Oct4 and Sox2 in T-ICs and decrease the clone formation rate, as well as downregulate tumorigenesis in MThFOB1.19 cells, supporting a suppressive role for TSSC3 in OS T-ICs. Furthermore, overexpression of TSSC3 was found to induce apoptosis of OS T-ICs through increasing cleaved caspase-3 (active form), increasing the release of Cyt c and decreasing pro-caspase-9 (pro-enzyme form), as well as disruption of the mitochondrial membrane potential (ΔΨ). Taken together, our findings provide preliminary evidence that TSSC3 inhibits OS tumorigenicity through reducing stemness and promoting apoptosis of T-ICs. Thus, targeting TSSC3 may be a promising approach to suppressing tumorigenicity in OS.  相似文献   

12.
To define the role of TGF alpha in normal tissue function and in pathogenesis, transgenic mice have been generated bearing a fusion gene consisting of the mouse metallothionein 1 promoter and a human TGF alpha cDNA. In these mice, human TGF alpha RNA and protein are abundant in many tissues and TGF alpha is detectable in blood and urine. The effects of TGF alpha overproduction in transgenic mice are pleiotropic and tissue specific. The liver frequently contains multifocal, well-differentiated hepatocellular carcinomas that express enhanced levels of human TGF alpha RNA. The mammary gland exhibits impeded morphogenetic penetration of epithelial duct cells into the stromal fat pad. The pancreas shows progressive interstitial fibrosis and a florid acinoductular metaplasia, during which acinar cells appear to degranulate, dedifferentiate, and assume characteristics of intercalated or centroacinar duct cells. TGF alpha therefore plays an important role in cellular proliferation, organogenesis, and neoplastic transformation.  相似文献   

13.
Cardiac excitation-contraction (E-C) coupling is impaired at the myofilament level in the reversible postischemic dysfunction known as "stunned" myocardium. We characterized tension development and calcium cycling in intact isolated trabeculae from transgenic (TG) mice expressing the major proteolytic degradation fragment of troponin I (TnI) found in stunned myocardium (TnI(1-193)) and determined the ATPase activity of myofibrils extracted from TG and non-TG mouse hearts. The phenotype of these mice at baseline recapitulates that of stunning. Here, we address the question of whether contractile reserve is preserved in these mice, as it is in genuine stunned myocardium. During twitch contractions, calcium cycling was normal, whereas tension was greatly reduced, compared with non-TG controls. A decrease in maximum Ca2+-activated tension and Ca2+ desensitization of the myofilaments accounted for this contractile dysfunction. The decrease in maximum tension was paralleled by an equivalent decrease in maximum Ca2+-activated myofibrillar ATPase activity. Exposure to high calcium or isoproterenol recruited a sizable contractile reserve in TG muscles, which was proportionately similar to that in control muscles but scaled downward in amplitude. These results suggest that calcium regulatory pathways and beta-adrenergic signal transduction remain intact in isolated trabeculae from stunned TG mice, further recapitulating key features of genuine stunned myocardium.  相似文献   

14.
15.
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention.  相似文献   

16.
Transgenic mice overexpressing the inflammatory cytokine TNF-alpha in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, decreased survival compared with non-transgenic littermates, and earlier pathology in males. TNF-alpha mice (TNF1.6) develop atrial arrhythmias on ambulatory telemetry monitoring that worsen with age and are more severe in males. We performed in vivo electrophysiological testing in transgenic and control mice, ex vivo optical mapping of voltage in the atria of isolated perfused TNF1.6 hearts, and in vitro studies on isolated atrial muscle and cells to study the mechanisms that lead to the spontaneous arrhythmias. Programmed stimulation induces atrial arrhythmias (n = 8/32) in TNF1.6 but not in control mice (n = 0/37), with a higher inducibility in males. In the isolated perfused hearts, programmed stimulation with single extra beats elicits reentrant atrial arrhythmias (n = 6/6) in TNF1.6 but not control hearts due to slow heterogeneous conduction of the premature beats. Lowering extracellular Ca(2+) normalizes conduction and prevents the arrhythmias. Atrial muscle and cells from TNF1.6 compared with control mice exhibit increased collagen deposition, decreased contractile function, and abnormal systolic and diastolic Ca(2+) handling. Thus abnormalities in action potential propagation and Ca(2+) handling contribute to the initiation of atrial arrhythmias in this mouse model of heart failure.  相似文献   

17.
NPC (nasopharyngeal carcinoma) is a common malignancy in southern China without defined aetiology. Recent studies have shown that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), exhibits anticancer activities. This study was to investigate the effects of TGFBR3 on NPC growth and the mechanisms for its actions. Effects of TGFBR3 overexpression on cell viability and apoptosis were measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], AO/EB (acridine orange/ethidium bromide) staining and electron microscopy in human NPC CNE-2Z cells. The expression of apoptosis-related proteins, p-Bad, Bad, XIAP (X-linked inhibitor of apoptosis), AIF (apoptosis-inducing factor), Bax and Bcl-2, was determined by Western blot or immunofluorescence analysis. Caspase 3 activity was measured by caspase 3 activity kit and [Ca2+]i (intracellular Ca2+ concentration) was detected by confocal microscopy. Transfection of TGFBR3 containing plasmid DNA at concentrations of 0.5 and 1 μg/ml reduced viability and induced apoptosis in CNE-2Z in concentration- and time-dependent manners. Forced expression of TGFBR3 up-regulated pro-apoptotic Bad and Bax protein, and down-regulated anti-apoptotic p-Bad, Bcl-2 and XIAP protein. Furthermore, transient overexpression of TGFBR3 also enhanced caspase 3 activity, increased [Ca2+]i and facilitated AIF redistribution from the mitochondria to the nucleus in CNE-2Z cells, which is independent of the caspase 3 pathway. These events were associated with TGFBR3-regulated multiple targets involved in CNE-2Z proliferation. Therefore transient overexpression of TGFBR3 may be a novel strategy for NPC prevention and therapy.  相似文献   

18.
There is emerging evidence that aldosterone can promote diastolic dysfunction and cardiac fibrosis independent of blood pressure effects, perhaps through increased oxidative stress and inflammation. Accordingly, this investigation was designed to ascertain if mineralocorticoid receptor blockade improves diastolic dysfunction independently of changes in blood pressure through actions on myocardial oxidative stress and fibrosis. We used young transgenic (mRen2)27 [TG(mRen2)27] rats with increases in both tissue ANG II and circulating aldosterone, which manifests age-related increases in hypertension and cardiac dysfunction. Male TG(mRen2)27 and age-matched Sprague-Dawley rats were treated with either a low dose (~1 mg·kg(-1)·day(-1)) or a vasodilatory, conventional dose (~30 mg·kg(-1)·day(-1)) of spironolactone or placebo for 3 wk. TG(mRen2)27 rats displayed increases in systolic blood pressure and plasma aldosterone levels as well as impairments in left ventricular diastolic relaxation without changes in systolic function on cine MRI. TG(mRen2)27 hearts also displayed hypertrophy (left ventricular weight, cardiomyoctye hypertrophy, and septal wall thickness) as well as fibrosis (interstitial and perivascular). There were increases in oxidative stress in TG(mRen2)27 hearts, as evidenced by increases in NADPH oxidase activity and subunits as well as ROS formation. Low-dose spironolactone had no effect on systolic blood pressure but improved diastolic dysfunction comparable to a conventional dose. Both doses of spironolactone caused comparable reductions in ROS/3-nitrotryosine immunostaining and perivascular and interstitial fibrosis. These data support the notion mineralocorticoid receptor blockade improves diastolic dysfunction through improvements in oxidative stress and fibrosis independent of changes in systolic blood pressure.  相似文献   

19.

Purpose

To examine the in vitro and in vivo efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type colorectal cancer (CRC).

Experimental Design

PIK3CA mutant and wild-type human CRC cell lines were treated in vitro with NVP-BEZ235, and the resulting effects on proliferation, apoptosis, and signaling were assessed. Colonic tumors from a genetically engineered mouse (GEM) model for sporadic wild-type PIK3CA CRC were treated in vivo with NVP-BEZ235. The resulting effects on macroscopic tumor growth/regression, proliferation, apoptosis, angiogenesis, and signaling were examined.

Results

In vitro treatment of CRC cell lines with NVP-BEZ235 resulted in transient PI3K blockade, sustained decreases in mTORC1/mTORC2 signaling, and a corresponding decrease in cell viability (median IC50 = 9.0–14.3 nM). Similar effects were seen in paired isogenic CRC cell lines that differed only in the presence or absence of an activating PIK3CA mutant allele. In vivo treatment of colonic tumor-bearing mice with NVP-BEZ235 resulted in transient PI3K inhibition and sustained blockade of mTORC1/mTORC2 signaling. Longitudinal tumor surveillance by optical colonoscopy demonstrated a 97% increase in tumor size in control mice (p = 0.01) vs. a 43% decrease (p = 0.008) in treated mice. Ex vivo analysis of the NVP-BEZ235-treated tumors demonstrated a 56% decrease in proliferation (p = 0.003), no effects on apoptosis, and a 75% reduction in angiogenesis (p = 0.013).

Conclusions

These studies provide the preclinical rationale for studies examining the efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type CRC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号