首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major histocompatability complex class II (MHCII) molecules are an essential component of the mammalian adaptive immune response. The expression of MHCII genes is regulated by a cell-specific multiprotein complex, termed the MHCII enhanceosome. The heterotrimeric RFX complex is the key DNA-binding component of the MHCII enhanceosome. The RFX complex is comprised of three proteins, RFXB, RFXAP, and RFX5, all of which are required for DNA binding and activation of MHCII gene expression. Static light scattering and chemical cross-linking of the three RFX proteins show that RFXB and RFXAP are monomers and that RFX5 dimerizes through two separate domains. One of these domains, the oligomerization domain, promotes formation of a dimer of dimers of RFX5. In addition, we show that the RFX complex forms a 2:1:1 complex of RFX5.RFXAP.RFXB, which can associate with a further dimer of RFX5 to form a 4:1:1 complex through the oligomerization domain of RFX5. On the basis of these studies, we propose DNA-binding models for the interaction between the RFX complex and the MHCII promoter including a DNA looping model. We also provide direct evidence that the RFX5(L66A) point mutation prevents dimerization of the RFX complexes and propose a model for how this results in a loss of MHCII gene expression.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The regulatory factor X (RFX) complex, which contains RFXANK(B), RFXAP, and RFX5, binds to X and S boxes in major histocompatibility complex class II (MHC II) promoters. In the bare lymphocyte syndrome (BLS), which is a human severe combined immunodeficiency, MHC II promoters are neither occupied nor transcribed. Thus, the absence of any one subunit prevents the formation of the RFX complex. Nevertheless, except for a weak binding between RFX5 and RFXAP, no other interactions between RFX proteins have been described. In this study, we demonstrate that RFXANK(B) binds to RFXAP to form a scaffold for the assembly of the RFX complex, which then binds to DNA. Moreover, mutant RFXANK(B) and RFXAP proteins from complementation groups B and D of BLS, respectively, cannot support this interaction. Our data elucidate an intriguing medical situation, where a genetic disease targets two different surfaces that are required for the nucleation of a multisubunit DNA-protein complex.  相似文献   

12.
13.
14.
15.
16.
17.
L Pugliatti  J Derré  R Berger  C Ucla  W Reith  B Mach 《Genomics》1992,13(4):1307-1310
RFX1 is a transacting DNA-binding regulatory factor involved in the control of MHC class II gene expression. RFX2 is a structurally very similar protein with identical DNA binding features. A member of the family of RFX factors is affected in an autosomal recessive disease, MHC class II deficient combined immunodeficiency (CID), caused by a defect in a trans-acting regulatory factor controlling MHC class II gene expression. In situ hybridization with 3H-labeled RFX1 cDNA has allowed us to identify two distinct targets on the short arm of chromosome 19 (19p13.1 and 19p13.2-p13.3). With the use of biotinylated genomic cosmid clones specific for RFX1 and RFX2, respectively, it was then possible to localize RFX1 at 19p13.1 and RFX2 at 19p13.2-p13.3. These two regulatory genes are thus assigned to a region of high gene density and RFX1 is close to another DNA-binding factor, LYL1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号